浙江省杭州市江干區(qū)重點達標名校2022年中考數(shù)學押題卷含解析_第1頁
浙江省杭州市江干區(qū)重點達標名校2022年中考數(shù)學押題卷含解析_第2頁
浙江省杭州市江干區(qū)重點達標名校2022年中考數(shù)學押題卷含解析_第3頁
浙江省杭州市江干區(qū)重點達標名校2022年中考數(shù)學押題卷含解析_第4頁
浙江省杭州市江干區(qū)重點達標名校2022年中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.在一幅長,寬的矩形風景畫的四周鑲一條金色紙邊,制成一幅矩形掛圖,如圖所示,如果要使整幅掛圖的面積是,設(shè)金色紙邊的寬為,那么滿足的方程是()A. B.C. D.2.如圖是根據(jù)我市某天七個整點時的氣溫繪制成的統(tǒng)計圖,則這七個整點時氣溫的中位數(shù)和平均數(shù)分別是()A.30,28B.26,26C.31,30D.26,223.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個正六邊形的邊心距OM和BC的長分別為()A.2,π3 B.23,π C.3,2π3 D.234.如圖,矩形ABOC的頂點A的坐標為(﹣4,5),D是OB的中點,E是OC上的一點,當△ADE的周長最小時,點E的坐標是()A.(0,) B.(0,) C.(0,2) D.(0,)5.在下列各平面圖形中,是圓錐的表面展開圖的是()A. B. C. D.6.八邊形的內(nèi)角和為()A.180° B.360° C.1080° D.1440°7.在-,,0,-2這四個數(shù)中,最小的數(shù)是()A. B. C.0 D.-28.如右圖是用八塊完全相同的小正方體搭成的幾何體,從正面看幾何體得到的圖形是()A. B.C. D.9.下列圖形是幾家通訊公司的標志,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.10.在平面直角坐標系中,點A的坐標是(﹣1,0),點B的坐標是(3,0),在y軸的正半軸上取一點C,使A、B、C三點確定一個圓,且使AB為圓的直徑,則點C的坐標是()A.(0,) B.(,0) C.(0,2) D.(2,0)二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖的三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過點B的直線折疊三角形,使點C落在AB邊的點E處,折痕為BD.則△AED的周長為____cm.12.如圖,在平面直角坐標系xOy中,點A,點B的坐標分別為(0,2),(-1,0),將線段AB沿x軸的正方向平移,若點B的對應(yīng)點的坐標為B'(2,0),則點A的對應(yīng)點A'的坐標為___.13.小明和小亮分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途中會經(jīng)過奶茶店C,小明先到達奶茶店C,并在C地休息了一小時,然后按原速度前往B地,小亮從B地直達A地,結(jié)果還是小明先到達目的地,如圖是小明和小亮兩人之間的距離y(千米)與小亮出發(fā)時間x(時)的函數(shù)的圖象,請問當小明到達B地時,小亮距離A地_____千米.14.若a+b=5,ab=3,則a2+b2=_____.15.計算的結(jié)果為.16.如圖,在Rt△ABC中,∠ACB=90°,點D、E、F分別是AB、AC、BC的中點,若CD=5,則EF的長為________.三、解答題(共8題,共72分)17.(8分)如圖,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圓⊙O上的一動點(點P與點C位于直線AB的異側(cè))連接AP、BP,延長AP到D,使PD=PB,連接BD.(1)求證:PC∥BD;(2)若⊙O的半徑為2,∠ABP=60°,求CP的長;(3)隨著點P的運動,的值是否會發(fā)生變化,若變化,請說明理由;若不變,請給出證明.18.(8分)如圖,在平面直角坐標系中,一次函數(shù)與反比例函數(shù)的圖像交于點和點,且經(jīng)過點.求反比例函數(shù)和一次函數(shù)的表達式;求當時自變量的取值范圍.19.(8分)某校要求八年級同學在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓練,為了了解八年級學生參加球類活動的整體情況,現(xiàn)以八年級(2)班作為樣本,對該班學生參加球類活動的情況進行統(tǒng)計,并繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖:八年級(2)班參加球類活動人數(shù)情況統(tǒng)計表項目籃球足球乒乓球排球羽毛球人數(shù)a6576八年級(2)班學生參加球類活動人數(shù)情況扇形統(tǒng)計圖根據(jù)圖中提供的信息,解答下列問題:a=,b=.該校八年級學生共有600人,則該年級參加足球活動的人數(shù)約人;該班參加乒乓球活動的5位同學中,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.20.(8分)計算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷221.(8分)已知:如圖,在平行四邊形中,的平分線交于點,過點作的垂線交于點,交延長線于點,連接,.求證:;若,,,求的長.22.(10分)如圖,已知點C是∠AOB的邊OB上的一點,求作⊙P,使它經(jīng)過O、C兩點,且圓心在∠AOB的平分線上.23.(12分)已知拋物線y=ax2+bx+c.(Ⅰ)若拋物線的頂點為A(﹣2,﹣4),拋物線經(jīng)過點B(﹣4,0)①求該拋物線的解析式;②連接AB,把AB所在直線沿y軸向上平移,使它經(jīng)過原點O,得到直線l,點P是直線l上一動點.設(shè)以點A,B,O,P為頂點的四邊形的面積為S,點P的橫坐標為x,當4+6≤S≤6+8時,求x的取值范圍;(Ⅱ)若a>0,c>1,當x=c時,y=0,當0<x<c時,y>0,試比較ac與l的大小,并說明理由.24.如圖,正方形OABC的面積為9,點O為坐標原點,點A在x軸上,點C上y軸上,點B在反比例函數(shù)y=(k>0,x>0)的圖象上,點E從原點O出發(fā),以每秒1個單位長度的速度向x軸正方向運動,過點E作x的垂線,交反比例函數(shù)y=(k>0,x>0)的圖象于點P,過點P作PF⊥y軸于點F;記矩形OEPF和正方形OABC不重合部分的面積為S,點E的運動時間為t秒.(1)求該反比例函數(shù)的解析式.(2)求S與t的函數(shù)關(guān)系式;并求當S=時,對應(yīng)的t值.(3)在點E的運動過程中,是否存在一個t值,使△FBO為等腰三角形?若有,有幾個,寫出t值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)矩形的面積=長×寬,我們可得出本題的等量關(guān)系應(yīng)該是:(風景畫的長+2個紙邊的寬度)×(風景畫的寬+2個紙邊的寬度)=整個掛圖的面積,由此可得出方程.【詳解】由題意,設(shè)金色紙邊的寬為,得出方程:(80+2x)(50+2x)=5400,整理后得:故選:B.【點睛】本題主要考查了由實際問題得出一元二次方程,對于面積問題應(yīng)熟記各種圖形的面積公式,然后根據(jù)等量關(guān)系列出方程是解題關(guān)鍵.2、B.【解析】試題分析:由圖可知,把7個數(shù)據(jù)從小到大排列為22,22,23,1,28,30,31,中位數(shù)是第4位數(shù),第4位是1,所以中位數(shù)是1.平均數(shù)是(22×2+23+1+28+30+31)÷7=1,所以平均數(shù)是1.故選B.考點:中位數(shù);加權(quán)平均數(shù).3、D【解析】試題分析:連接OB,∵OB=4,∴BM=2,∴OM=23,BC=故選D.考點:1正多邊形和圓;2.弧長的計算.4、B【解析】解:作A關(guān)于y軸的對稱點A′,連接A′D交y軸于E,則此時,△ADE的周長最小.∵四邊形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐標為(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中點,∴D(﹣2,0).設(shè)直線DA′的解析式為y=kx+b,∴,∴,∴直線DA′的解析式為.當x=0時,y=,∴E(0,).故選B.5、C【解析】

結(jié)合圓錐的平面展開圖的特征,側(cè)面展開是一個扇形,底面展開是一個圓.【詳解】解:圓錐的展開圖是由一個扇形和一個圓形組成的圖形.故選C.【點睛】考查了幾何體的展開圖,熟記常見立體圖形的展開圖的特征,是解決此類問題的關(guān)鍵.注意圓錐的平面展開圖是一個扇形和一個圓組成.6、C【解析】試題分析:根據(jù)n邊形的內(nèi)角和公式(n-2)×180o可得八邊形的內(nèi)角和為(8-2)×180o=1080o,故答案選C.考點:n邊形的內(nèi)角和公式.7、D【解析】

根據(jù)正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù),兩個負數(shù),絕對值大的反而小比較即可.【詳解】在﹣,,0,﹣1這四個數(shù)中,﹣1<﹣<0<,故最小的數(shù)為:﹣1.故選D.【點睛】本題考查了實數(shù)的大小比較,解答本題的關(guān)鍵是熟練掌握實數(shù)的大小比較方法,特別是兩個負數(shù)的大小比較.8、B【解析】

找到從正面看所得到的圖形即可,注意所有從正面看到的棱都應(yīng)表現(xiàn)在主視圖中.【詳解】解:從正面看該幾何體,有3列正方形,分別有:2個,2個,2個,如圖.故選B.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看到的視圖,屬于基礎(chǔ)題型.9、C【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;B.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;C.是軸對稱圖形,也是中心對稱圖形.故正確;D.不是軸對稱圖形,是中心對稱圖形.故錯誤.故選C.【點睛】掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180°后與原圖重合.10、A【解析】

直接根據(jù)△AOC∽△COB得出OC2=OA?OB,即可求出OC的長,即可得出C點坐標.【詳解】如圖,連結(jié)AC,CB.

依△AOC∽△COB的結(jié)論可得:OC2=OAOB,即OC2=1×3=3,解得:OC=或?(負數(shù)舍去),故C點的坐標為(0,).故答案選:A.【點睛】本題考查了坐標與圖形性質(zhì),解題的關(guān)鍵是熟練的掌握坐標與圖形的性質(zhì).二、填空題(本大題共6個小題,每小題3分,共18分)11、7【解析】

根據(jù)翻折變換的性質(zhì)可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周長=AC+AE.【詳解】∵折疊這個三角形點C落在AB邊上的點E處,折痕為BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周長=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案為:7.【點睛】本題考查了翻折變換的性質(zhì),翻折前后對應(yīng)邊相等,對應(yīng)角相等.12、(3,2)【解析】

根據(jù)平移的性質(zhì)即可得到結(jié)論.【詳解】∵將線段AB沿x軸的正方向平移,若點B的對應(yīng)點B′的坐標為(2,0),∵-1+3=2,∴0+3=3∴A′(3,2),故答案為:(3,2)【點睛】本題考查了坐標與圖形變化-平移.解決本題的關(guān)鍵是正確理解題目,按題目的敘述一定要把各點的大致位置確定,正確地作出圖形.13、1【解析】

根據(jù)題意設(shè)小明的速度為akm/h,小亮的速度為bkm/h,求出a,b的值,再代入方程即可解答.【詳解】設(shè)小明的速度為akm/h,小亮的速度為bkm/h,,解得,,當小明到達B地時,小亮距離A地的距離是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案為1.【點睛】此題考查一次函數(shù)的應(yīng)用,解題關(guān)鍵在于列出方程組.14、1【解析】試題分析:首先把等式a+b=5的等號兩邊分別平方,即得a2+2ab+b2=25,然后根據(jù)題意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案為1.考點:完全平方公式.15、【解析】

直接把分子相加減即可.【詳解】=,故答案為:.【點睛】本題考查了分式的加減法,關(guān)鍵是要注意通分及約分的靈活應(yīng)用.16、5【解析】

已知CD是Rt△ABC斜邊AB的中線,那么AB=2CD;EF是△ABC的中位線,則EF應(yīng)等于AB的一半.【詳解】∵△ABC是直角三角形,CD是斜邊的中線,∴CD=AB,又∵EF是△ABC的中位線,∴AB=2CD=2×5=10,∴EF=×10=5.故答案為5.【點睛】本題主要考查三角形中位線定理,直角三角形斜邊上的中線,熟悉掌握是關(guān)鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(2)+;(3)的值不變,.【解析】

(1)根據(jù)等腰三角形的性質(zhì)得到∠ABC=45°,∠ACB=90°,根據(jù)圓周角定理得到∠APB=90°,得到∠APC=∠D,根據(jù)平行線的判定定理證明;(2)作BH⊥CP,根據(jù)正弦、余弦的定義分別求出CH、PH,計算即可;(3)證明△CBP∽△ABD,根據(jù)相似三角形的性質(zhì)解答.【詳解】(1)證明:∵△ABC是等腰直角三角形,且AC=BC,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB為⊙O的直徑,∴∠APB=90°,∵PD=PB,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC∥BD;(2)作BH⊥CP,垂足為H,∵⊙O的半徑為2,∠ABP=60°,∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt△BCH中,CH=BC?cos∠BCH=,BH=BC?sin∠BCH=,在Rt△BHP中,PH=BH=,∴CP=CH+PH=+;(3)的值不變,∵∠BCP=∠BAP,∠CPB=∠D,∴△CBP∽△ABD,∴=,∴=,即=.【點睛】本題考查的是圓周角定理、相似三角形的判定和性質(zhì)以及銳角三角函數(shù)的概念,掌握圓周角定理、相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.18、(1),;(2)或.【解析】

(1)把點A坐標代入可求出m的值即可得反比例函數(shù)解析式;把點A、點C代入可求出k、b的值,即可得一次函數(shù)解析式;(2)聯(lián)立一次函數(shù)和反比例函數(shù)解析式可求出點B的坐標,根據(jù)圖象,求出一次函數(shù)圖象在反比例函數(shù)圖象的上方時,x的取值范圍即可.【詳解】(1)把代入得.∴反比例函數(shù)的表達式為把和代入得,解得∴一次函數(shù)的表達式為.(2)由得∴當或時,.【點睛】本題考查了一次函數(shù)和反比例函數(shù)的交點問題,解決問題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式.求反比例函數(shù)與一次函數(shù)的交點坐標時,把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解,則兩者有交點,若方程組無解,則兩者無交點.19、(1)a=16,b=17.5(2)90(3)【解析】試題分析:(1)首先求得總?cè)藬?shù),然后根據(jù)百分比的定義求解;(2)利用總數(shù)乘以對應(yīng)的百分比即可求解;(3)利用列舉法,根據(jù)概率公式即可求解.試題解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案為16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案為90;(3)如圖,∵共有20種等可能的結(jié)果,兩名主持人恰為一男一女的有12種情況,∴則P(恰好選到一男一女)==.考點:列表法與樹狀圖法;用樣本估計總體;扇形統(tǒng)計圖.20、【解析】

按照實數(shù)的運算順序進行運算即可.【詳解】解:原式【點睛】本題考查實數(shù)的運算,主要考查零次冪,負整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及立方根,熟練掌握各個知識點是解題的關(guān)鍵.21、(1)詳見解析;(2)【解析】

(1)根據(jù)題意平分可得,從而證明即可解答(2)由(1)可知,再根據(jù)四邊形是平行四邊形可得,過點作延長線于點,再根據(jù)勾股定理即可解答【詳解】(1)證明:平分又又(2)四邊形是平行四邊形,為等邊三角形過點作延長線于點.在中,【點睛】此題考查三角形全等的判定與性質(zhì),勾股定理,平行四邊形的性質(zhì),解題關(guān)鍵在于作好輔助線22、答案見解析【解析】

首先作出∠AOB的角平分線,再作出OC的垂直平分線,兩線的交點就是圓心P,再以P為圓心,PC長為半徑畫圓即可.【詳解】解:如圖所示:.【點睛】本題考查基本作圖,掌握垂直平分線及角平分線的做法是本題的解題關(guān)鍵..23、(Ⅰ)①y=x2+3x②當3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤(Ⅱ)ac≤1【解析】

(I)①由拋物線的頂點為A(-2,-3),可設(shè)拋物線的解析式為y=a(x+2)2-3,代入點B的坐標即可求出a值,此問得解,②根據(jù)點A、B的坐標利用待定系數(shù)法可求出直線AB的解析式,進而可求出直線l的解析式,分點P在第二象限及點P在第四象限兩種情況考慮:當點P在第二象限時,x<0,通過分割圖形求面積法結(jié)合3+6≤S≤6+2,即可求出x的取值范圍,當點P在第四象限時,x>0,通過分割圖形求面積法結(jié)合3+6≤S≤6+2,即可求出x的取值范圍,綜上即可得出結(jié)論,(2)由當x=c時y=0,可得出b=-ac-1,由當0<x<c時y>0,可得出拋物線的對稱軸x=≥c,進而可得出b≤-2ac,結(jié)合b=-ac-1即可得出ac≤1.【詳解】(I)①設(shè)拋物線的解析式為y=a(x+2)2﹣3,∵拋物線經(jīng)過點B(﹣3,0),∴0=a(﹣3+2)2﹣3,解得:a=1,∴該拋物線的解析式為y=(x+2)2﹣3=x2+3x.②設(shè)直線AB的解析式為y=kx+m(k≠0),將A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,得:,解得:,∴直線AB的解析式為y=﹣2x﹣2.∵直線l與AB平行,且過原點,∴直線l的解析式為y=﹣2x.當點P在第二象限時,x<0,如圖所示.S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,∴S=S△POB+S△AOB=﹣3x+2(x<0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍是≤x≤.當點P′在第四象限時,x>0,過點A作AE⊥x軸,垂足為點E,過點P′作P′F⊥x軸,垂足為點F,則S四邊形AEOP′=S梯形AEFP′﹣S△OFP′=?(x+2)﹣?x?(2x)=3x+3.∵S△ABE=×2×3=3,∴S=S四邊形AEOP′+S△ABE=3x+2(x>0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍為≤x≤.綜上所述:當3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤.(II)ac≤1,理由如下:∵當x=c時,y=0,∴ac2+bc+c=0,∵c>1,∴ac+b+1=0,b=﹣ac﹣1.由x=c時,y=0,可知拋物線與x軸的一個交點為(c,0).把x=0代入y=ax2+bx+c,得y=c,∴拋物線與y軸的交點為(0,c).∵a>0,∴拋物線開口向上.∵當0<x<c時,y>0,∴拋物線的對稱軸x=﹣≥c,∴b≤﹣2ac.∵b=﹣ac﹣1,∴﹣ac﹣1≤﹣2ac,∴ac≤1.【點睛】本題主要考查了待定系數(shù)法求二次(一次)函數(shù)解析式、三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論