(2019新教材)人教A版高中數(shù)學(xué)必修第二冊全冊學(xué)案_第1頁
(2019新教材)人教A版高中數(shù)學(xué)必修第二冊全冊學(xué)案_第2頁
(2019新教材)人教A版高中數(shù)學(xué)必修第二冊全冊學(xué)案_第3頁
(2019新教材)人教A版高中數(shù)學(xué)必修第二冊全冊學(xué)案_第4頁
(2019新教材)人教A版高中數(shù)學(xué)必修第二冊全冊學(xué)案_第5頁
已閱讀5頁,還剩95頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

(2019A6.1平面向量的概念念P2-P4→→A→.→→-1-→AB,點AB→→→01))))→→)))a)→AC.起點是MBM指向NDM-2-→OA)ABDC→和→→→→A,B,C,D→→;→→→→→→→→a與b的b與ca與c)AB-3-CDACD)→→→→ABCD→→→→AB→→A在點O→→B在點A→→C在點BA在點OA距點O→A距點O→A→B在點AB距點A→為B→C在點B距點B3C-4-→A2到達BB2到達CC12到達D→→→→;D地在A地距A→→→→=12DAA地12→→-5-aa→→→→a.→→→→→→→→→a.→→→→→→→ab,F(xiàn)A;與c→→→.→→→→→→→→→→→.→→→)→→A→→→B→→CD→→→,BC和-6-→→和,→→→→→→.→→→→→→→→→)B.2D.4→)→→→,→→.O,→→→→→→→→.→→→→.a)a.A.3C.1B.2D.0a共aa)A.若a與b平行,b與c平行,則a與c一定平行BD1a與cO)→→→→→→→→C|→→→→→→-8-→→→O)ACBDOA,B,C的→→→aa)ABCDaaab→→22→5D→53.2532→→A,B,CmmA,B,C→→→→又m-9-C→→→→→→→→→→,→→→→→.綊BC.→→.→→→→→→C→→與P,點E,F(xiàn)P,且)→→→→→→→→→→→→→→→.→→交ABD→→A作BCE.,→3A5BCCD→,=90°,BC=102米,CD=10=5=2255→AO九128128→→i8Oi8A128AAAAAAAA135724686.2.1向量的加法運算-12-P7-P10→A→a與b→→→即OOb→就是a與b的和則-13-))())A.2B.3D.5C.4→→B.b→→→O→→→→O=→→→,→→→→→→→→→→→→-15-→→;→→→;→→→→→+FA.→→→→→.→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→+FA=AF+FA=0.)→→→→→→.AC.①BD.③→→→→→→→→→-16-→→→→→→→→→→→→→→→→→→→.→→→→→→→→→→→→→→→→→B為→→→→Akm到達BB東km送往C→→→→→又β→→→|22=222→→→→→→→→→→→→→→.→→→)ABCD→→→→→的→1→→→→O)→→→→→→→→O+→→→與O→)→→→→→→→→→→→→→→→→→→a131α=3B.2C.3D.23→→,→→→→→→→,→→→→)Aa與b與aB.若a與b與bC.若a與b同向,則a+b與a同向D.若a與b同向,則a+b與b同向與b與aB與b與a同向,也與b→→→→→O→→→→→→→→→→→M.→→→→,→→→→→→→→→b→→→→a→→;-20-→→,→→→→→→→→→→→→→又P→→→→→→→→→→→→222,→→→→→→→→222→→→→→O,BA11→BN,→→→→aaa與baba與b→→→Oba)))))→→→→→→→→→→-24-設(shè)b是a)A與bC.a(chǎn)與bBD是b→→→→→→→→→→.→→→→→→→→→→→M.→→→→→→→→→→→→→.→→→.→→→→→→.→)→→→→→→→→→.ABCD→→→→→→→→C→→→-25-→→→→→→→→→→→→→→→→→→→→→→→→→→→→.→→→O,→過點A作綊,連接OD,→→→O→→→→→→→→→→O→→B→→→→→.→→→→→→→→→→→→→→→→=________.-27-→→→→→→→→→→→→→→→→→→→→O與BD→→→→→→,→→→→→→即.→→→→→→→→→→→→→→→→→→→又|→→→→→→→→→O→→→→→→→→→→→.→→→→→→→→→→→→→)ACBD→→→→→O,E,F(xiàn))→→→→→→→→→→→→→→→→→→→→→→→→→)ACBD→→→→→→→;→→→→;→→→;→→→→.0)A.4B.3-29-D.1→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→)B.2D.4→→→→→→→→→→→→→→→→→→→→→→2→→和O→→→→→→→→→→→→→→,→→→→→→→→→→→→→→→→→→→→→→f表示以下向量:→→;→→→→→→→→→→→→→→→→→→→與→→.與與;→→→;→→;→→→→→→→得點B→→→→→→→→→→→→→→→→→→→A.→→→d和→→→→→→→→→→=→→M→→6.2.3向量的數(shù)乘運算P13-P16aaaaa如設(shè)μμ121212-34-ba與ba)與a與a)m)))ACB.a(chǎn)Da與b)ABDC12231134③.1323-b-35-23137324b25=b325=313231323=b555(2(33353=--j5333532513222244224b+-+-+5533535324112a-322113322272112322-36-7211232241177e12→→→121212和ek1212→→→→→.12121212→→B,A、B、D與e12121212,12由于e與e12b與a→→b與a→→→→A,從而A,B,Ca與b1,313.13-37-→→1212→→→→→21→→→→12→→→14e-e+e=e-e.12112212→→→1212,12→21→)11→→11→→A.AB+22BAB-2211→→11→→C.-+22D.AB-2211→→→→→=AB-.2211)32ACBD16131442333332→→Oe-e=()1221→→→→13→→22→→→→→==e-e.2121→→→e,e12121212證A,B,D→→,1212→→→.12→→→→→1212與BDB,所以A,B,Da)λ-39-ABDC.a(chǎn)與λa2ABDa與λa22m與m)A.-1或3C.-1或43D.3或4m與以m=m=-1或m=3.→→→O為BC)→→→→→→→→D→→→D為BC,→→→→→→.→→)ABDC→→A,B,C→→m→→→→)13→→13→→A.-AB+22AB-2211→→11→→AB-22D.-AB+22121→→→2→→→→→→→→→==PA+AB=-40-11→→AB-.22→→→→P=λ131→→→→→→=PB.313與與131412()+122371376276-a.13121172+--+342322317237367-b71716262=→→→a與b→→→kA,B,Ck→→→→→→→→→(2)AB=OBA1→→在.2→→→)-41-2121→→→→→→1112與OBO)AC→交AB=→,λ>1,注意到λ3131115311+2=3>1,+>++=<1,+=<1,故選434423645→→→m→→→→→→13→→→→→→→→→→→→→→→→→→→→→→→→2→→→→→1233A,B,C123312→→→=+,332313→→→→→→即2,→→→→C,A,B,C→→A,B,C,→→→→→→λB→→→→→→→→則6.2.4向量的數(shù)量積算a在b-43-P17-P22→→a與bπa與b2→→a與a與b.→→→→AB,分別作CDA,→11→111→→OM→Mab11→b與bθ1π2→→→111π2→→11設(shè)b.當(dāng)a與ba2.c共a.222或))))與n的夾角為45°,則m)AB2D2C221ba與b)5ABDC解析:選B.設(shè)a與b1b515151.2[],與與即a222222即-46-與b→→→→→→.222222→→→→→→→→→→→→→→→→1-2→→.→→→→→→,→→→→→→)→→22-47-)A.4C.2B.3D.02→→32→→→→→→→→→→·BA=(BA+BC·BA=a=a.22223a22a與b)3C.4B.23D3與b)213121145=a222=2212=343412.2222a22a222a與bθ2222b2222-48-222234得a2222a=2212222222123a與ba與b的a與b2222221=.2π3[].-49-b2a與b=.212==.22π.3ππ33=a+tb222222222-22|2與互相垂直,則k)3A32B.2C32D.1πb3與223.2即2222而則a222π則,23-50-即或2或5a與b=π3e,則λ121212132414e·e=+222212121.212a與b)ππ64ππ321=2π3.與b與dk的)AC.3B.6D22eba在b解析:設(shè)a與b的夾角θ,則-51-4==,54a在b-e55e5與a垂直,求a與b解:設(shè)向量a與b222a22a==2→→)ABCD→→)3C.35D.522a與b)ππ6363-52-122.3a與b)A.2C.6B.4D222222→→)332A.-2B.C32D.32→→=3.2aba與b則213.2232πa與b3π23=3-53-→→1→→→→=21212.12b,1212所以a=,2222221212=,2=212,22222.2bab(1)求a與b的夾角θ;又a在bθ123.2與224.7-54-→→→→→→→)2ACBD→→→→→→→→→→→→→→,22→→→→→→→→→→→→2→→與b)ππ636322223向量a-b與bθ==222.6→→→→1→→→→→→→=-AB,3→→→→→13→→→→→=+-AB))21→→→→=+)331312→→→→=AB·AC+-223313132→→1311223383→→=+|-|=-+.2223-55-83ee121212121+2與e+te1212)|得1212<0,1212121222若21則t∈.21212設(shè)<0,可得1212.21∪-.222→→.→→→→→→→→122→3→→→→→→==.33()()→→=→→→→·1323→→→→=+·--56-132929→→→→=--221313→→→→→→→++AB,2323→→→→→→→BP=BC+-AB,1323→→→→→→=+·-1329→→→→=--22131→→3→→.→→1→→3→→→→→→→→,2=.323→→.6.3.1平面向量基本定理P25-P27-57-e,e1212若e,e12121212λ1212)μ()1122121212A12121212112→1111→12→→→→→=2設(shè)e,e12與e與e與與e-e.112122112211212λ①設(shè)e+e=λe,則121所以e與ee與e+e121112e122112則e與ee與e122112211e21221e與1221即e與1221ee與e-121212121ee與e-e21212③x=x,12a與bx1122y=y(tǒng).12O是)→→→→→→→→.ACBD-59-→→→→→→→→O)→→→→→→→→→→→→→→→→→→→→G.→→→→1→→→+21212→→→+→→→→1212→→→+→.2=BF,32→→→→→+321a32-60-21223333→→→→→→→→.→→→→→→→→→→→→→→12→→→→→D=)1221b33b333443b55b55121→31323→→→→→→=13,E,F(xiàn)=→→→→.1FA,DF=BC,311→→11→→====3326121212→→→→→→==b,所以FA=BA161123→→→→→-FA=-b=131126→→→→→b=-61-M是BCN在ACM與BNP,求與BP∶PN.→→=e,12→→→→→→.2112A,P,M和B,P,N→→,12→→.12→→→→→+PA=BP.12→→→12得4=,53=.54535→→→→==BN,→→→.2→→=,5252→→5→→→→→+)42345555N為AC與BP∶PN.-62-→→=e,12→→→→→→.2112A,P,M和B,P,N→→,12→→.12→→→→→+PA=BP.12→→→12得2=,32=.32323→→→→==BN,e121212121233e=,112113312e=2121123333313故e+e=b+b=-1221-331→→→→→為AB=3-63-→→,→→→→→→→→+CA+CB,2.32→→→)1212)121212)212112→→→→→→→→→→→→→11→→→=22→→→→→→→,又→→→,11221122→11221122→==e)12e1212λ,μλμ與11221112212211122122使12ACBD.②1λ212→→→)121212(e+e)(e-e)12121212)(e-e)21211→→→→→O=)2121=212→→→,若A,B,D三12121212k)A.2BD.3C→→→→→是1212-65-→→→D)→→→34→→→→→→→→→→→→+=AB+AB+AC.→→→→D=rAB+sAC)5844→→→→→→45.-=.555a與bOC=→→→→→→→→O→→→μ→→→→→→→→===+=,14=.3e.121212.12121212則.12121212131313→→→→→AC-→→→→121212k12121→→→→為CD,→→→→→→→→→→→→→→xAB-yAD12→→→→→-+,λ1x1113→→→→→→→→→→→→,11=211→b55→→→1111→→→→22=+AC=+1115→→→b=666615→→→=66116623b=1121623→=+112+=,231111+=+26=.22314→→==.→→;交于O1411→→441423→→→==AB===BC,222→→→33323→→→===→→→→→→→→→2323→→→bD=1=43=,2314→μ267=.33→→→→==-69-6.3.2平面向量的正交分解及坐標(biāo)表示6.3.3平面向量加、減運算的坐標(biāo)表示6.3.4平面向量數(shù)乘運算的坐標(biāo)表示第1課時P27-P331和e2a=bx=x且y12121122-70-112212121212y11→→11222121))))→A)ACBD→)ACBD設(shè)與→已知OA→-71-→→→→即A(2→00→→x==00333-,22xy→→→→→→→,→→c)ACBD→→→→AM的c滿足A→→→→→→CB,→→設(shè)M1122→11→22xxxx1212yyyy1212所以M→→→→OCB,→→→→→→→→→→→→→→.→→所以M-73-→→1→→-2A→→→1→→→→-2mmma+nb=(2m,m+n,m-mmm→→→OP在x軸上?點P在y軸上?點P→→→2P在x.31若點P在y.3若點P2313.→→→→-74-→→→→→→→M,→)32323-23-211→→221232==.2.已知在非平行四邊形ABCDA,B,DC→→→C-75-)ABCD→→A→→→→又32,2.2aOaa設(shè)a→則A即ax→→→→)ACBD→→→→)A.-22-76-21,2所→→→→AD)22→→→)2→A→→λ→AB→→→→→OBa和b故1323→→→→→A=11→→=AB=332323→→→→→→→→→Ammm→→AM→→y11→-78-111y11y122222221→→→→3.7mmxy112244ACπ4→→→π→→→→C作⊥x軸于點=E42→→→2→→→→P在BC,點Q是AC=→→→→→→Q是,→→→→→→→→→=O=→Ox32設(shè)x-,111y=,1設(shè)λ121212λ,λ122λ-,2λ1211222A→→→→→→→(m,n∈RPm→→→P→→→P→P00A→→→→→,00x0y0m,00Pym00第2課時P31-P33-81-設(shè)xy-xy11221221xy1=1≠0,yxy2222axyyxy-122112xy=021)xyy)11221221)A.a(chǎn)11B.a(chǎn)22C.a(chǎn)33D.a(chǎn)44→Aa)ABCD→→以D23→→A-82-1313.→→→→→→2→→→→=31,313131==33與a則)52AC.7B.12D.-與a1.2-83-→→A→→,→→→→→→→→→A→→→k為何值時,A,B,C→→→3→→→→→=AB,2→→→→A,所以點A,B,C→→A,B,C→→→→→→→→即或或時,A,B,C→→→→→→→→k或或時,A,B,C-84-A,B,CACC)AB.9D.3CC→→A,B,C,→→→→AxA,B,C→→→→→x→→→→→→→→而A,B,CA,B,C-85-1→→252→設(shè)M→→→,72→→→→即77與F,求DFA→→121212→→→D是=+AC7-.21→→→12因為MF為AD27274-=.)ABCDmA)ABCD→→A1212mmmk5m=,98.9-87-又.)ACBDm)12B.2C12Dα1==.α212u∥v,則實數(shù)k()A7B122C43D.-38u∥v,1.2→→→→)ACBD→→→→即B1AA,B,CC)2-88-ABCDCA,B,C→→.1272→=,→72xA→→→;→→→;→→→.→→→→→→→→→→=→→→→mmnmmmm-89-k與→→b且A,B,Cm與1.21與2A,B,C→→λ∈R,即3解得m=.2→→→→AM及→2→→1PPP|點P312122→A→→→→→設(shè)M1122→→1122xM1122→O→→→→→→→→

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論