




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第三章
一元一次方程3.2解一元一次方程(一)——合并同類項與移項第2課時
用移項法解一元
一次方程第三章一元一次方程3.2解一元一次方程(一)——合并11課堂講解移項用移項法解一元一次方程2課時流程逐點導(dǎo)講練課堂小結(jié)作業(yè)提升1課堂講解移項2課時流程逐點課堂小結(jié)作業(yè)提升2等式兩邊都加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式.等式的基本性質(zhì)2:等式兩邊都乘以(或除以)同一個不等于0的數(shù),所得結(jié)果仍是等式.等式的基本性質(zhì)1:等式兩邊都加上(或減去)同一個代數(shù)式,所得結(jié)果等式的基本性質(zhì)31知識點移項知1-講6x–2=106x=10+2①②式到式有些什么變化?
“把原方程中的–2改變符號后,從方程的一邊移到另一邊,這種變形叫移項.”1知識點移項知1-講6x–2=104知1-講1.定義:把等式一邊的某項變號后移到另一邊叫
做移項.2.方法:把方程右邊含有未知數(shù)的項改變符號后
移到方程左邊,把方程左邊不含未知數(shù)的項改
變符號后移到方程右邊,即“常數(shù)右邊湊熱鬧,
未知左邊來報到”.知1-講1.定義:把等式一邊的某項變號后移到另一邊叫5知1-講
例1將方程5x+1=2x-3移項后,可得(
)A.5x-2x=-3+1
B.5x-2x=-3-1C.5x+2x=-3-1D.5x+2x=1-3導(dǎo)引:A.常數(shù)項1移項時沒有變號;C.2x移項時沒有變號;D.2x和常數(shù)項1移項時均未變
號,故選B.B知1-講例1將方程5x+1=2x-3移項后6總
結(jié)知1-講移項與交換律的根本區(qū)別是移項時移動的項要跨越等號,并且一定要記住移項要變號.總結(jié)知1-講移項與交換律的根本區(qū)7知1-練把方程3y-6=y(tǒng)+8變形為3y-y=8+6,這種變形叫做________,依據(jù)是__________________.解方程時,移項法則的依據(jù)是(
)A.加法交換律B.加法結(jié)合律C.等式的性質(zhì)1D.等式的性質(zhì)212移項等式的性質(zhì)1C知1-練把方程3y-6=y(tǒng)+8變形為3y-y=8+6,這種變8知1-練解下列方程時,既要移含未知數(shù)的項,又要移常數(shù)項的是(
)A.2x=6-3x
B.2x-4=3x+1C.2x-2-x=1D.x-5=73B知1-練解下列方程時,既要移含未知數(shù)的項,又要移常數(shù)項的是(9知1-練下列各式中的變形,屬于移項的是(
)A.由3x-2y-1得-1-2y+3xB.由9x-3=x+5得9x-3=5+xC.由4-x=5x-2得5x-2=4-xD.由2-x=x-2得2+2=x+x4D知1-練下列各式中的變形,屬于移項的是()4D102知識點用移項法解一元一次方程知2-導(dǎo)下面的框圖表示了解這個方程的流程.3x+20=4x-253x-4x=-25-20-x=-45x=45移項系數(shù)化為1合并同類項由上可知,這個班有45名學(xué)生.2知識點用移項法解一元一次方程知2-導(dǎo)下面的框圖表示了解這個11知2-導(dǎo)歸
納移項解一元一次方程一般步驟:
①移項②合并同類項③系數(shù)化為1知2-導(dǎo)歸納移項解一元一次方程一般步驟:12知2-講例2解下列方程:解:(1)移項,得3x+2x=32-7.合并同類項,得5x=25.系數(shù)化為1,得x=5.(2)移項,得合并同類項,得系數(shù)化為1,得x=-8.知2-講例2解下列方程:解:(1)移項,得3x+13總
結(jié)知2-講移項法是解簡易方程的最基本的方法,其目的是便于合并同類項,要把移項與多項式項的移動區(qū)別開來;解題的關(guān)鍵是要記住“移項要變號”這一要訣;其步驟為“一移二并三化”.總結(jié)知2-講移項法是解簡易方程的最基本的14知2-練解下列方程:1方程3x-4=3-2x的解答過程的正確順序是(
)①合并同類項,得5x=7;②移項,得3x+2x=3+4;③系數(shù)化為1,得x=.A.①②③B.③②①C.②①③D.③①②2(1)1;(2)-24.C知2-練解下列方程:1方程3x-4=3-2x的解答過程的正確15知2-練關(guān)于x的方程4x-6=3m與x-1=2有相同的解,則m等于(
)A.-2
B.2
C.-3
D.33B知2-練關(guān)于x的方程4x-6=3m與x-1=2有相同的解,則16知2-講例3某制藥廠制造一批藥品,如用舊工藝,則廢水
排量要比環(huán)保限制的最大量還多200t;如用新
工藝,則廢水排量比環(huán)保限制的最大量少100t
新、舊工藝的廢水排量之比為2:5,兩種工藝的
廢水排量各是多少?分析:因為新、舊工藝的廢水排量之比為2:5,所以可
設(shè)它們分別為2xt和5xt,再根據(jù)它們與環(huán)保限
制的最大量之間的關(guān)系列方程. 知2-講例3某制藥廠制造一批藥品,如用舊工17知2-講解:設(shè)新、舊工藝的廢水排量分別為2xt和5xt.
根據(jù)廢水排量與環(huán)保限制最大量之間的關(guān)系,得5x-200=2x+100.移項,得5x-2x=100+200.合并同類項,得3x=300.系數(shù)化為1,得x=100.所以2x=200,5x=500.
答:新、舊工藝產(chǎn)生的廢水排量分別為200t和500t.等號兩邊代表哪個數(shù)量?知2-講解:設(shè)新、舊工藝的廢水排量分別為2xt和5xt.18總
結(jié)知2-講解決比例問題,一般設(shè)每份為未知數(shù),用含未知數(shù)的式子表示相關(guān)的量,再根據(jù)等量關(guān)系列出方程.總結(jié)知2-講解決比例問題,一般設(shè)每份19知2-講例4已知|3x-6|+(2y-8)2=0,求2x-y的值.解:由題意,得|3x-6|=0,(2y-8)2=0.所以3x-6=0,2y-8=0.
解得x=2,y=4.所以2x-y=2×2-4=0.知2-講例4已知|3x-6|+(2y-8)2=0,20知2-講例5單項式7x2m-1yn+2與-9x3y-n+4的和仍是
單項式,求m-n的值.解:由題意,得2m-1=3,n+2=-n+4,解得m=2,n=1.
則m-n=2-1=1.知2-講例5單項式7x2m-1yn+2與-9x3y21知2-練王芳和李麗同時采摘櫻桃,王芳平均每小時采摘8kg,李麗平均每小時采摘7kg.采摘結(jié)束后王芳從她采摘的櫻桃中取出0.25kg給了李麗,這時兩人的櫻桃一樣多.她們采摘用了多少時間?1設(shè)采摘了xh.8x-0.25=7x+0.25,x=0.5.知2-練王芳和李麗同時采摘櫻桃,王芳平均每小時采摘8kg,22知2-練2
若-2x2m+1y6與x3m-1y10+4n是同類項,則m,n的值分別為(
)A.2,-1
B.-2,1
C.-1,2
D.-2,-1A知2-練2若-2x2m+1y6與x3m-1y1023知2-練若“☆”是新規(guī)定的某種運算符號,x☆y=xy+x+y,則2☆m=-16中,m的值為(
)A.8B.-8C.6D.-6(中考·深圳)某商品的標(biāo)價為200元,8折銷售仍賺40元,則該商品的進(jìn)價為(
)元.A.140B.120C.160D.10034DB知2-練若“☆”是新規(guī)定的某種運算符號,x☆y=xy+x+y24用移項法解一元一次方程的一般步驟:移項→合并同類項→系數(shù)化為1.移項的原則:未知項左邊來報到,常數(shù)項右邊湊熱鬧.移項的方法:把方程中的某些項改變符號后,從方程的一邊移到另一邊,即移項要變號.用移項法解一元一次方程的一般步驟:2531、生活中若沒有朋友,就像生活中沒有陽光一樣。32、任何業(yè)績的質(zhì)變,都來自于量變的積累。33、空想會想出很多絕妙的主意,但卻辦不成任何事情。34、不大可能的事也許今天實現(xiàn),根本不可能的事也許明天會實現(xiàn)。35、再長的路,一步步也能走完,再短的路,不邁開雙腳也無法到達(dá)。36、失敗者任其失敗,成功者創(chuàng)造成功。37、世上沒有絕望的處境,只有對處境絕望的人。38、天助自助者,你要你就能。39、我自信,故我成功;我行,我一定能行。40、每個人都有潛在的能量,只是很容易:被習(xí)慣所掩蓋,被時間所迷離,被惰性所消磨。41、從現(xiàn)在開始,不要未語淚先流。42、造物之前,必先造人。43、富人靠資本賺錢,窮人靠知識致富。44、顧客后還有顧客,服務(wù)的開始才是銷售的開始。45、生活猶如萬花筒,喜怒哀樂,酸甜苦辣,相依相隨,無須過于在意,人生如夢看淡一切,看淡曾經(jīng)的傷痛,好好珍惜自己、善待自己。46、有志者自有千計萬計,無志者只感千難萬難。47、茍利國家生死以,豈因禍福避趨之。48、不要等待機會,而要創(chuàng)造機會。49、如夢醒來,暮色已降,豁然開朗,欣然歸家。癡幻也好,感悟也罷,在這青春的飛揚的年華,亦是一份收獲。猶思“花開不是為了花落,而是為了更加燦爛。50、人活著要呼吸。呼者,出一口氣;吸者,爭一口氣。51、如果我不堅強,那就等著別人來嘲笑。52、若不給自己設(shè)限,則人生中就沒有限制你發(fā)揮的藩籬。53、希望是厄運的忠實的姐妹。54、辛勤的蜜蜂永沒有時間悲哀。55、領(lǐng)導(dǎo)的速度決定團(tuán)隊的效率。56、成功與不成功之間有時距離很短只要后者再向前幾步。57、任何的限制,都是從自己的內(nèi)心開始的。58、偉人所達(dá)到并保持著的高處,并不是一飛就到的,而是他們在同伴譽就很難挽回。59、不要說你不會做!你是個人你就會做!60、生活本沒有導(dǎo)演,但我們每個人都像演員一樣,為了合乎劇情而認(rèn)真地表演著。31、生活中若沒有朋友,就像生活中沒有陽光一樣。26第三章
一元一次方程3.2解一元一次方程(一)——合并同類項與移項第2課時
用移項法解一元
一次方程第三章一元一次方程3.2解一元一次方程(一)——合并271課堂講解移項用移項法解一元一次方程2課時流程逐點導(dǎo)講練課堂小結(jié)作業(yè)提升1課堂講解移項2課時流程逐點課堂小結(jié)作業(yè)提升28等式兩邊都加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式.等式的基本性質(zhì)2:等式兩邊都乘以(或除以)同一個不等于0的數(shù),所得結(jié)果仍是等式.等式的基本性質(zhì)1:等式兩邊都加上(或減去)同一個代數(shù)式,所得結(jié)果等式的基本性質(zhì)291知識點移項知1-講6x–2=106x=10+2①②式到式有些什么變化?
“把原方程中的–2改變符號后,從方程的一邊移到另一邊,這種變形叫移項.”1知識點移項知1-講6x–2=1030知1-講1.定義:把等式一邊的某項變號后移到另一邊叫
做移項.2.方法:把方程右邊含有未知數(shù)的項改變符號后
移到方程左邊,把方程左邊不含未知數(shù)的項改
變符號后移到方程右邊,即“常數(shù)右邊湊熱鬧,
未知左邊來報到”.知1-講1.定義:把等式一邊的某項變號后移到另一邊叫31知1-講
例1將方程5x+1=2x-3移項后,可得(
)A.5x-2x=-3+1
B.5x-2x=-3-1C.5x+2x=-3-1D.5x+2x=1-3導(dǎo)引:A.常數(shù)項1移項時沒有變號;C.2x移項時沒有變號;D.2x和常數(shù)項1移項時均未變
號,故選B.B知1-講例1將方程5x+1=2x-3移項后32總
結(jié)知1-講移項與交換律的根本區(qū)別是移項時移動的項要跨越等號,并且一定要記住移項要變號.總結(jié)知1-講移項與交換律的根本區(qū)33知1-練把方程3y-6=y(tǒng)+8變形為3y-y=8+6,這種變形叫做________,依據(jù)是__________________.解方程時,移項法則的依據(jù)是(
)A.加法交換律B.加法結(jié)合律C.等式的性質(zhì)1D.等式的性質(zhì)212移項等式的性質(zhì)1C知1-練把方程3y-6=y(tǒng)+8變形為3y-y=8+6,這種變34知1-練解下列方程時,既要移含未知數(shù)的項,又要移常數(shù)項的是(
)A.2x=6-3x
B.2x-4=3x+1C.2x-2-x=1D.x-5=73B知1-練解下列方程時,既要移含未知數(shù)的項,又要移常數(shù)項的是(35知1-練下列各式中的變形,屬于移項的是(
)A.由3x-2y-1得-1-2y+3xB.由9x-3=x+5得9x-3=5+xC.由4-x=5x-2得5x-2=4-xD.由2-x=x-2得2+2=x+x4D知1-練下列各式中的變形,屬于移項的是()4D362知識點用移項法解一元一次方程知2-導(dǎo)下面的框圖表示了解這個方程的流程.3x+20=4x-253x-4x=-25-20-x=-45x=45移項系數(shù)化為1合并同類項由上可知,這個班有45名學(xué)生.2知識點用移項法解一元一次方程知2-導(dǎo)下面的框圖表示了解這個37知2-導(dǎo)歸
納移項解一元一次方程一般步驟:
①移項②合并同類項③系數(shù)化為1知2-導(dǎo)歸納移項解一元一次方程一般步驟:38知2-講例2解下列方程:解:(1)移項,得3x+2x=32-7.合并同類項,得5x=25.系數(shù)化為1,得x=5.(2)移項,得合并同類項,得系數(shù)化為1,得x=-8.知2-講例2解下列方程:解:(1)移項,得3x+39總
結(jié)知2-講移項法是解簡易方程的最基本的方法,其目的是便于合并同類項,要把移項與多項式項的移動區(qū)別開來;解題的關(guān)鍵是要記住“移項要變號”這一要訣;其步驟為“一移二并三化”.總結(jié)知2-講移項法是解簡易方程的最基本的40知2-練解下列方程:1方程3x-4=3-2x的解答過程的正確順序是(
)①合并同類項,得5x=7;②移項,得3x+2x=3+4;③系數(shù)化為1,得x=.A.①②③B.③②①C.②①③D.③①②2(1)1;(2)-24.C知2-練解下列方程:1方程3x-4=3-2x的解答過程的正確41知2-練關(guān)于x的方程4x-6=3m與x-1=2有相同的解,則m等于(
)A.-2
B.2
C.-3
D.33B知2-練關(guān)于x的方程4x-6=3m與x-1=2有相同的解,則42知2-講例3某制藥廠制造一批藥品,如用舊工藝,則廢水
排量要比環(huán)保限制的最大量還多200t;如用新
工藝,則廢水排量比環(huán)保限制的最大量少100t
新、舊工藝的廢水排量之比為2:5,兩種工藝的
廢水排量各是多少?分析:因為新、舊工藝的廢水排量之比為2:5,所以可
設(shè)它們分別為2xt和5xt,再根據(jù)它們與環(huán)保限
制的最大量之間的關(guān)系列方程. 知2-講例3某制藥廠制造一批藥品,如用舊工43知2-講解:設(shè)新、舊工藝的廢水排量分別為2xt和5xt.
根據(jù)廢水排量與環(huán)保限制最大量之間的關(guān)系,得5x-200=2x+100.移項,得5x-2x=100+200.合并同類項,得3x=300.系數(shù)化為1,得x=100.所以2x=200,5x=500.
答:新、舊工藝產(chǎn)生的廢水排量分別為200t和500t.等號兩邊代表哪個數(shù)量?知2-講解:設(shè)新、舊工藝的廢水排量分別為2xt和5xt.44總
結(jié)知2-講解決比例問題,一般設(shè)每份為未知數(shù),用含未知數(shù)的式子表示相關(guān)的量,再根據(jù)等量關(guān)系列出方程.總結(jié)知2-講解決比例問題,一般設(shè)每份45知2-講例4已知|3x-6|+(2y-8)2=0,求2x-y的值.解:由題意,得|3x-6|=0,(2y-8)2=0.所以3x-6=0,2y-8=0.
解得x=2,y=4.所以2x-y=2×2-4=0.知2-講例4已知|3x-6|+(2y-8)2=0,46知2-講例5單項式7x2m-1yn+2與-9x3y-n+4的和仍是
單項式,求m-n的值.解:由題意,得2m-1=3,n+2=-n+4,解得m=2,n=1.
則m-n=2-1=1.知2-講例5單項式7x2m-1yn+2與-9x3y47知2-練王芳和李麗同時采摘櫻桃,王芳平均每小時采摘8kg,李麗平均每小時采摘7kg.采摘結(jié)束后王芳從她采摘的櫻桃中取出0.25kg給了李麗,這時兩人的櫻桃一樣多.她們采摘用了多少時間?1設(shè)采摘了xh.8x-0.25=7x+0.25,x=0.5.知2-練王芳和李麗同時采摘櫻桃,王芳平均每小時采摘8kg,48知2-練2
若-2x2m+1y6與x3m-1y10+4n是同類項,則m,n的值分別為(
)A.2,-1
B.-2,1
C.-1,2
D.-2,-1A知2-練2若-2x2m+1y6與x3m-1y1049知2-練若“☆”是新規(guī)定的某種運算符號,x☆y=xy+x+y,則2☆m=-16中,m的值為(
)A.8B.-8C.6D.-6(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年楚雄貨運從業(yè)資格證怎么考
- 個人裝修水電合同
- 2025年宜昌道路運輸從業(yè)資格證考試內(nèi)容是什么
- 2025年平頂山貨運從業(yè)資格模擬考
- 2025年室外裝修承包合同8篇
- 《數(shù)據(jù)可視化技術(shù)應(yīng)用》1.2 開啟數(shù)據(jù)可視化之門-教案
- 2025年陜西貨運從業(yè)資格證考試題技巧
- 旋片真空泵競爭策略分析報告
- 產(chǎn)品訂單合同范本
- 電安裝施工合同范本
- 建筑冷熱源素材樣本
- 胸椎小關(guān)節(jié)紊亂診斷與治療-課件
- 四川省德陽市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細(xì)及行政區(qū)劃代碼
- Unit1Developingideaslittlewhitelies課件-高中英語外研版必修第三冊
- Unit 2 Listening and speaking 課件-高中英語人教版(2019)選擇性必修第二冊
- (參考)食品加工操作流程圖
- 員工面試登記表
- 鋼棧橋施工方案型鋼
- PySide學(xué)習(xí)教程
- 事業(yè)單位綜合基礎(chǔ)知識考試題庫 綜合基礎(chǔ)知識考試題庫.doc
- 譯林初中英語教材目錄
評論
0/150
提交評論