




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
6.3Many-electronatoms1TheSchr?dingerequationofmany-electronatoms(Born-Oppenheimer
Approximation)Unfortunately,precisesolutionsarenotavailablethroughtheSchr?dingerequation,evenforthesimplestmany-electron,helium,because6.3Many-electronatoms1The1
⑴IndependentparticlemodelTheSchr?dingerequationSeparationofvariables⑴IndependentparticlemodelT2
⑵MeanfieldmodelAnelectronatadistancerfromthenucleusexperiencesaCoulombicrepulsionfromalltheelectronswithinasphereofradiusrandwhichisequivalenttoapointnegativechargelocatedonthenucleus.,
n=1,2,3,……⑵MeanfieldmodelAnelectro3Symmetric,Bosons
Antisymmetric,Fermions
⑵ThePauliprinciple
Allelectronicwavefunctionsmustbeantisymmetricundertheinterchangeofanytwoelectrons.2IdenticalparticlesandthePauliprinciple⑴IdenticalparticlesIdenticalparticlescannotbedistinguishedbymeansofanyintrinsicproperties.Symmetric,BosonsAntisymmetri4⑶Slaterdeterminant—Normalizationconstant(i)(ii)Notwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑶Slaterdeterminant—Normaliz5
4Electronconfigurations⑴ThePauliexclusionprincipleNotwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑵Groundstateelectronconfiguration—Aufbauprinciple4Electronconfigurations⑴T6⑶Hund’sruleElectronsoccupytheorbitalsofasubshellsinglyuntileachorbitalhasoneelectron.p6,d10,f14
p3,d5,f7
p0,d0,f0⑶Hund’srulep6,d10,f14 7⑵Atomicunits1a.umass=themassofelectronm=9.109×1028g1a.ucharge=thechargeofprotone=1.602×10-19C1a.ulength=Bohrradius1a.uenergy=e2/a0=27.2eVTheH2+hastwoprotonsandoneelectronandcanbedescribedusingtheSchr?dingerequation5Molecules5.1Hydrogen
Molecule
Ion(H2+)⑴TheSchr?dingerequationofH2+⑵Atomicunits1a.umass=the8⑶TheSchr?dingerequationofH2+ina.u①TheHamiltoniana.u②Schr?dingerequation⑷Thevariationtheorem①Thevariationtheoremforalinearexpansion⑶TheSchr?dingerequationof9①TheestimatedwavefunctionTheestimatedwavefunctionhastosatisfysomeconditions.NotethatwehavetousethecorrectHamiltonianforthesystem,butwedonotknowhowtosolvetheSchr?dingerequationforthisHamiltonian.Thevariationtheoremtellsusthat:<E>ETheexpectationvalueoftheenergyisalwayshigherthanthecorrectresult.
MolecularOrbital--aLinearCombinationofAtomicOrbitalsLCAO-MO①Theestimatedwavefunction10②Expectationvalueoftheenergy〈E〉Theproblemisamaximum-minimumproblemincalculus.Wemusthave:③Thewavefunction⑸ThesolutionofSchrodingerequationofH2+②Expectationvalueoftheen11LCAO-MOR→∞,ra→∞,①TheestimatedwavefunctionIfR→∞,ra→∞,thenLCAO-MOR→∞,ra→∞,①Theesti12②TheenergyofH2+②TheenergyofH2+13Alltheintegralsabovecaninprinciplebeevaluated.Weknowthefunctionsandtheoperator.Wewilljustgivethemnames:soTheseequationsarecalledlinearhomogeneousequations.Alltheintegralsabovecanin14TheseculardeterminantHaa=Hbb,
Hab=Hba,
Sab=Sba,and
c1=c2
Theimportantquestioniswhetherthereisasolutionotherthanthetrivialsolution.Thereis.Thewavefunctiondisappears(thetrivialsolution)forallvaluesof<E>exceptforthevaluesof<E>thatsatisfythedeterminantequation:
c1=-c2TheseculardeterminantHaa=Hbb15③ApproximatewavefunctionsolvetheequationforE1NormalizationsolvetheequationforE2SoNormalization③Approximatewavefunctionsol16④TheintegralsSab,HaaandHab
(i)Sab—theoverlapintegralR0,soSab0.IfR=0,Sab=1;R=∞,Sab=0.④TheintegralsSab,HaaandH17
(ii)Haa—Coulombintegral(ii)Haa—Coulombintegral18(iii)Hab—exchangeintegral(integral)R>0,soHab<0,HabR↑,|Hab|↓,Sab<<1,E1=Haa+Hab=+
,E2=Haa-Hab=-
HaaEa,soE1=Ea+
,E2=Ea-
(iii)Hab—exchangeintegral(19⑤Discussion(i)Theenergyof1and2Thecalculatedandexperimentalmolecularpotentialenergycurvesforahydrogenmolecule-ion.(ii)Bondingorbital1⑤Discussion(i)Theenergyof20Theelectrondensitycalculatedbyformingthesquareofthewavefunction.Notetheaccumulationofelectrondensityintheinternuclearregion.Theboundarysurfaceofa(orbitalenclosestheregionwheretheelectronsthatoccupytheorbitalaremostlikelytobefound.Notethattheorbitalhascylindricalsymmetry.Theelectrondensitycalculate21(iii)Antibondingorbital2(iii)Antibondingorbital222Apartialexplanationoftheoriginofbondingandantibondingeffects.(a)Inabondingorbital,thenucleiareattractedtotheaccumulationofelectrondensityintheinternuclearregion.(b)Inanantibondingorbital,thenucleiareattractedtoanaccumulationofelectrondensityoutsidetheinternuclearregion.Apartialexplanationoftheo235.2.Molecularorbitaltheory(MOtheory)1.ThemolecularHamiltonianAmoleculeconsistsofnumberofelectronsandnuclei.ThemolecularHamiltonianoperator
hasacomplicatedform.
=(1,2,N):(WithintheBorn--Oppenheimerapproximation)MainapproximationofabinitioMOtheory
theBorn--OppenheimerapproximationTheorbitalapproximationNon-relativityapproximation5.2.Molecularorbitaltheory242.Themolecularwavefunctions(molecularorbitals)Solet'sconsiderasimplerproblem,involvingtheone-electronhamiltonianSeparationofvariables(1,2,3…N)2.Themolecularwavefunction25(1,2,…,N)=det{(1)(1)(2)(2)…(N)(N)}3.Variationalparameter,orD=C?CDiscalledthedensitymatrix,aproductofAO--MOcoefficientmatrices(1,2,…,N)=det{(1)(1)(2)264.Hartree-FockequationsLetslookatageneralexampleoffunctionalvariationWritingtheenergyaswewantE=0,soThus4.Hartree-FockequationsLets27Itisclearthatthiscanbewrittenasamatrixproduct,andisinfactaneigenvalueequationintheform
Hc=ScEwecanrewritetheHartree-FockequationsasUsingthefactthat
isdiagonal,thiscanbewrittenasthematrixproduct
FC=SC
www.adi.uam.es\Docs\Knowledge\Fundamental_Theory\hf\hf.htmlItisclearthatthiscanbew28CapabilitiesofabinitioquantumchemistryCancalculatewavefunctionsanddetaileddescriptionsofmolecularorbitalsCancalculateatomiccharges,dipolemoments,multipolemoments,polarisabilities,etc.Cancalculatevibrationalfrequencies,IRandRamanintensities,NMRchemicalshiftsCancalculateionisationenergiesandelectronaffinitiesCanincludetheelectrostaticeffectsonsolvationCancalculatethegeometriesandenergiesofequilibriumstructures,transitionstructures,intermediates,andneutralandchargedspeciesCancalculategroundandexcitedstatesCanhandleanyelectronconfigurationCanhandleanyelementCanoptimisegeometriesCapabilitiesofabinitioquan295.3TheHuckelMoleculorOrbitalmethod(HMO)HMOdealwithconjugatedmolecules.Butadiene,e.g.:61s+4(1s22s22px12py12pz0)=26AOHMOapproximation:4pz.Inhisapproach,Theorbitalsaretreatedseparatelyfromtheorbitals,andthelatterformarigidframeworkthatdeterminetheshapeofthemolecule.⑴HuckelapproximationIHMOissuggestedbyEricHückelin1931.5.3TheHuckelMoleculorOrb30Butadiene4pzofCatomsButadiene4pzofCatoms31Theenergyandcoefficientssatisfythefollowingequations:let
Thebestmolecularorbitalsarethosewhichminimisethetotalenergy.Thisisachievedbyimposingthecondition::Theenergyandcoefficientss32⑵HuckelapproximationII:non-trivialsolutions:Thesevalues,calledthenon-trivialsolutionstotheseequations,occurwhen:⑵HuckelapproximationII:no33letThisdeterminantcanbeeasilymultipliedouttogive:x4-3x2+1=0letThisdeterminantcanbeeas341=0.37171+0.60152+0.60153+0.371742=0.60151+0.37172—0.37173—0.601543=0.60151—0.37172—0.37173+0.601544=0.37171—0.60152+0.60153—0.37174<0,soE1<E2<E3<E4WeobtainfourvaluesofE,whichisreasonablesinceweexpecttofindfourmolecularorbitals.1=0.37171+0.60152+0.60153+35DelocalizationenergyTotalenergyE=2E1+2E2=2×(+1.62)+2×(+0.62)=4+4.48EnergylevelsOccupiedorbitalUnfilledorbitalC=C—C=CE’=4+4E-E’=0.48FrontierorbitalsThehighestoccupiedmolecularorbital,HOMOThelowestunfilledmolecularorbital,LUMOThefrontierorbitalsareimportantbecausetheyarelargelyresponsibleformanyofthechemicalandspectroscopicpropertiesofthemolecule.DelocalizationenergyEnergyl366.3Many-electronatoms1TheSchr?dingerequationofmany-electronatoms(Born-Oppenheimer
Approximation)Unfortunately,precisesolutionsarenotavailablethroughtheSchr?dingerequation,evenforthesimplestmany-electron,helium,because6.3Many-electronatoms1The37
⑴IndependentparticlemodelTheSchr?dingerequationSeparationofvariables⑴IndependentparticlemodelT38
⑵MeanfieldmodelAnelectronatadistancerfromthenucleusexperiencesaCoulombicrepulsionfromalltheelectronswithinasphereofradiusrandwhichisequivalenttoapointnegativechargelocatedonthenucleus.,
n=1,2,3,……⑵MeanfieldmodelAnelectro39Symmetric,Bosons
Antisymmetric,Fermions
⑵ThePauliprinciple
Allelectronicwavefunctionsmustbeantisymmetricundertheinterchangeofanytwoelectrons.2IdenticalparticlesandthePauliprinciple⑴IdenticalparticlesIdenticalparticlescannotbedistinguishedbymeansofanyintrinsicproperties.Symmetric,BosonsAntisymmetri40⑶Slaterdeterminant—Normalizationconstant(i)(ii)Notwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑶Slaterdeterminant—Normaliz41
4Electronconfigurations⑴ThePauliexclusionprincipleNotwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑵Groundstateelectronconfiguration—Aufbauprinciple4Electronconfigurations⑴T42⑶Hund’sruleElectronsoccupytheorbitalsofasubshellsinglyuntileachorbitalhasoneelectron.p6,d10,f14
p3,d5,f7
p0,d0,f0⑶Hund’srulep6,d10,f14 43⑵Atomicunits1a.umass=themassofelectronm=9.109×1028g1a.ucharge=thechargeofprotone=1.602×10-19C1a.ulength=Bohrradius1a.uenergy=e2/a0=27.2eVTheH2+hastwoprotonsandoneelectronandcanbedescribedusingtheSchr?dingerequation5Molecules5.1Hydrogen
Molecule
Ion(H2+)⑴TheSchr?dingerequationofH2+⑵Atomicunits1a.umass=the44⑶TheSchr?dingerequationofH2+ina.u①TheHamiltoniana.u②Schr?dingerequation⑷Thevariationtheorem①Thevariationtheoremforalinearexpansion⑶TheSchr?dingerequationof45①TheestimatedwavefunctionTheestimatedwavefunctionhastosatisfysomeconditions.NotethatwehavetousethecorrectHamiltonianforthesystem,butwedonotknowhowtosolvetheSchr?dingerequationforthisHamiltonian.Thevariationtheoremtellsusthat:<E>ETheexpectationvalueoftheenergyisalwayshigherthanthecorrectresult.
MolecularOrbital--aLinearCombinationofAtomicOrbitalsLCAO-MO①Theestimatedwavefunction46②Expectationvalueoftheenergy〈E〉Theproblemisamaximum-minimumproblemincalculus.Wemusthave:③Thewavefunction⑸ThesolutionofSchrodingerequationofH2+②Expectationvalueoftheen47LCAO-MOR→∞,ra→∞,①TheestimatedwavefunctionIfR→∞,ra→∞,thenLCAO-MOR→∞,ra→∞,①Theesti48②TheenergyofH2+②TheenergyofH2+49Alltheintegralsabovecaninprinciplebeevaluated.Weknowthefunctionsandtheoperator.Wewilljustgivethemnames:soTheseequationsarecalledlinearhomogeneousequations.Alltheintegralsabovecanin50TheseculardeterminantHaa=Hbb,
Hab=Hba,
Sab=Sba,and
c1=c2
Theimportantquestioniswhetherthereisasolutionotherthanthetrivialsolution.Thereis.Thewavefunctiondisappears(thetrivialsolution)forallvaluesof<E>exceptforthevaluesof<E>thatsatisfythedeterminantequation:
c1=-c2TheseculardeterminantHaa=Hbb51③ApproximatewavefunctionsolvetheequationforE1NormalizationsolvetheequationforE2SoNormalization③Approximatewavefunctionsol52④TheintegralsSab,HaaandHab
(i)Sab—theoverlapintegralR0,soSab0.IfR=0,Sab=1;R=∞,Sab=0.④TheintegralsSab,HaaandH53
(ii)Haa—Coulombintegral(ii)Haa—Coulombintegral54(iii)Hab—exchangeintegral(integral)R>0,soHab<0,HabR↑,|Hab|↓,Sab<<1,E1=Haa+Hab=+
,E2=Haa-Hab=-
HaaEa,soE1=Ea+
,E2=Ea-
(iii)Hab—exchangeintegral(55⑤Discussion(i)Theenergyof1and2Thecalculatedandexperimentalmolecularpotentialenergycurvesforahydrogenmolecule-ion.(ii)Bondingorbital1⑤Discussion(i)Theenergyof56Theelectrondensitycalculatedbyformingthesquareofthewavefunction.Notetheaccumulationofelectrondensityintheinternuclearregion.Theboundarysurfaceofa(orbitalenclosestheregionwheretheelectronsthatoccupytheorbitalaremostlikelytobefound.Notethattheorbitalhascylindricalsymmetry.Theelectrondensitycalculate57(iii)Antibondingorbital2(iii)Antibondingorbital258Apartialexplanationoftheoriginofbondingandantibondingeffects.(a)Inabondingorbital,thenucleiareattractedtotheaccumulationofelectrondensityintheinternuclearregion.(b)Inanantibondingorbital,thenucleiareattractedtoanaccumulationofelectrondensityoutsidetheinternuclearregion.Apartialexplanationoftheo595.2.Molecularorbitaltheory(MOtheory)1.ThemolecularHamiltonianAmoleculeconsistsofnumberofelectronsandnuclei.ThemolecularHamiltonianoperator
hasacomplicatedform.
=(1,2,N):(WithintheBorn--Oppenheimerapproximation)MainapproximationofabinitioMOtheory
theBorn--OppenheimerapproximationTheorbitalapproximationNon-relativityapproximation5.2.Molecularorbitaltheory602.Themolecularwavefunctions(molecularorbitals)Solet'sconsiderasimplerproblem,involvingtheone-electronhamiltonianSeparationofvariables(1,2,3…N)2.Themolecularwavefunction61(1,2,…,N)=det{(1)(1)(2)(2)…(N)(N)}3.Variationalparameter,orD=C?CDiscalledthedensitymatrix,aproductofAO--MOcoefficientmatrices(1,2,…,N)=det{(1)(1)(2)624.Hartree-FockequationsLetslookatageneralexampleoffunctionalvariationWritingtheenergyaswewantE=0,soThus4.Hartree-FockequationsLets63Itisclearthatthiscanbewrittenasamatrixproduct,andisinfactaneigenvalueequationintheform
Hc=ScEwecanrewritetheHartree-FockequationsasUsingthefactthat
isdiagonal,thiscanbewrittenasthematrixproduct
FC=SC
www.adi.uam.es\Docs\Knowledge\Fundamental_Theory\hf\hf.htmlItisclearthatthiscanbew64CapabilitiesofabinitioquantumchemistryCancalculatewavefunctionsanddetaileddescriptionsofmolecularorbitalsCancalculateatomiccharges,dipolemoments,multipolemoments,polarisabilities,etc.Cancalculatevibrationalfrequencies,IRandRamanintensities,NMRchemicalshiftsCancalculateionisationenergiesandelectronaffinitiesCanincludetheelectrostaticeffectsonsolvationCancalculatethegeometriesandenergiesofequilibriumstructures,transitionstructures,intermediates,andneutralandchargedspeciesCancalculategroundandexcitedstatesCanhandleanyelectronconfigurationCanhandleanyelementCanoptimisegeometriesCapabilitiesofabiniti
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 掛車租出合同6篇
- 場地有償使用合同7篇
- 公寓式房屋轉(zhuǎn)租合同
- 廣告制作安裝合同書
- 臨街商鋪租賃合同
- 工程降水分包合同
- 土地利用規(guī)劃的制定與執(zhí)行指導書
- 員工租賃車輛協(xié)議
- 信封印刷合同6篇
- 圍墻工程包工合同
- 2025年安全員C證(專職安全員)考試題庫
- 地理-天一大聯(lián)考2025屆高三四省聯(lián)考(陜晉青寧)試題和解析
- 醫(yī)療衛(wèi)生系統(tǒng)招聘考試(中醫(yī)學專業(yè)知識)題庫及答案
- 貴州省貴陽市2024-2025學年九年級上學期期末語文試題(含答案)
- 小巴掌童話課件
- 教科版六年級科學下冊全冊教學設(shè)計教案
- 部編版小學五年級下冊《道德與法治》全冊教案含教學計劃
- 2024年青島遠洋船員職業(yè)學院高職單招語文歷年參考題庫含答案解析
- 定額〔2025〕1號文-關(guān)于發(fā)布2018版電力建設(shè)工程概預(yù)算定額2024年度價格水平調(diào)整的通知
- 2024建筑施工安全生產(chǎn)隱患識別圖合集
- 2025年江蘇南京技師學院招聘工作人員19人高頻重點提升(共500題)附帶答案詳解
評論
0/150
提交評論