量子化學與群論基礎(chǔ)6課件_第1頁
量子化學與群論基礎(chǔ)6課件_第2頁
量子化學與群論基礎(chǔ)6課件_第3頁
量子化學與群論基礎(chǔ)6課件_第4頁
量子化學與群論基礎(chǔ)6課件_第5頁
已閱讀5頁,還剩67頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

6.3Many-electronatoms1TheSchr?dingerequationofmany-electronatoms(Born-Oppenheimer

Approximation)Unfortunately,precisesolutionsarenotavailablethroughtheSchr?dingerequation,evenforthesimplestmany-electron,helium,because6.3Many-electronatoms1The1

⑴IndependentparticlemodelTheSchr?dingerequationSeparationofvariables⑴IndependentparticlemodelT2

⑵MeanfieldmodelAnelectronatadistancerfromthenucleusexperiencesaCoulombicrepulsionfromalltheelectronswithinasphereofradiusrandwhichisequivalenttoapointnegativechargelocatedonthenucleus.,

n=1,2,3,……⑵MeanfieldmodelAnelectro3Symmetric,Bosons

Antisymmetric,Fermions

⑵ThePauliprinciple

Allelectronicwavefunctionsmustbeantisymmetricundertheinterchangeofanytwoelectrons.2IdenticalparticlesandthePauliprinciple⑴IdenticalparticlesIdenticalparticlescannotbedistinguishedbymeansofanyintrinsicproperties.Symmetric,BosonsAntisymmetri4⑶Slaterdeterminant—Normalizationconstant(i)(ii)Notwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑶Slaterdeterminant—Normaliz5

4Electronconfigurations⑴ThePauliexclusionprincipleNotwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑵Groundstateelectronconfiguration—Aufbauprinciple4Electronconfigurations⑴T6⑶Hund’sruleElectronsoccupytheorbitalsofasubshellsinglyuntileachorbitalhasoneelectron.p6,d10,f14

p3,d5,f7

p0,d0,f0⑶Hund’srulep6,d10,f14 7⑵Atomicunits1a.umass=themassofelectronm=9.109×1028g1a.ucharge=thechargeofprotone=1.602×10-19C1a.ulength=Bohrradius1a.uenergy=e2/a0=27.2eVTheH2+hastwoprotonsandoneelectronandcanbedescribedusingtheSchr?dingerequation5Molecules5.1Hydrogen

Molecule

Ion(H2+)⑴TheSchr?dingerequationofH2+⑵Atomicunits1a.umass=the8⑶TheSchr?dingerequationofH2+ina.u①TheHamiltoniana.u②Schr?dingerequation⑷Thevariationtheorem①Thevariationtheoremforalinearexpansion⑶TheSchr?dingerequationof9①TheestimatedwavefunctionTheestimatedwavefunctionhastosatisfysomeconditions.NotethatwehavetousethecorrectHamiltonianforthesystem,butwedonotknowhowtosolvetheSchr?dingerequationforthisHamiltonian.Thevariationtheoremtellsusthat:<E>ETheexpectationvalueoftheenergyisalwayshigherthanthecorrectresult.

MolecularOrbital--aLinearCombinationofAtomicOrbitalsLCAO-MO①Theestimatedwavefunction10②Expectationvalueoftheenergy〈E〉Theproblemisamaximum-minimumproblemincalculus.Wemusthave:③Thewavefunction⑸ThesolutionofSchrodingerequationofH2+②Expectationvalueoftheen11LCAO-MOR→∞,ra→∞,①TheestimatedwavefunctionIfR→∞,ra→∞,thenLCAO-MOR→∞,ra→∞,①Theesti12②TheenergyofH2+②TheenergyofH2+13Alltheintegralsabovecaninprinciplebeevaluated.Weknowthefunctionsandtheoperator.Wewilljustgivethemnames:soTheseequationsarecalledlinearhomogeneousequations.Alltheintegralsabovecanin14TheseculardeterminantHaa=Hbb,

Hab=Hba,

Sab=Sba,and

c1=c2

Theimportantquestioniswhetherthereisasolutionotherthanthetrivialsolution.Thereis.Thewavefunctiondisappears(thetrivialsolution)forallvaluesof<E>exceptforthevaluesof<E>thatsatisfythedeterminantequation:

c1=-c2TheseculardeterminantHaa=Hbb15③ApproximatewavefunctionsolvetheequationforE1NormalizationsolvetheequationforE2SoNormalization③Approximatewavefunctionsol16④TheintegralsSab,HaaandHab

(i)Sab—theoverlapintegralR0,soSab0.IfR=0,Sab=1;R=∞,Sab=0.④TheintegralsSab,HaaandH17

(ii)Haa—Coulombintegral(ii)Haa—Coulombintegral18(iii)Hab—exchangeintegral(integral)R>0,soHab<0,HabR↑,|Hab|↓,Sab<<1,E1=Haa+Hab=+

,E2=Haa-Hab=-

HaaEa,soE1=Ea+

,E2=Ea-

(iii)Hab—exchangeintegral(19⑤Discussion(i)Theenergyof1and2Thecalculatedandexperimentalmolecularpotentialenergycurvesforahydrogenmolecule-ion.(ii)Bondingorbital1⑤Discussion(i)Theenergyof20Theelectrondensitycalculatedbyformingthesquareofthewavefunction.Notetheaccumulationofelectrondensityintheinternuclearregion.Theboundarysurfaceofa(orbitalenclosestheregionwheretheelectronsthatoccupytheorbitalaremostlikelytobefound.Notethattheorbitalhascylindricalsymmetry.Theelectrondensitycalculate21(iii)Antibondingorbital2(iii)Antibondingorbital222Apartialexplanationoftheoriginofbondingandantibondingeffects.(a)Inabondingorbital,thenucleiareattractedtotheaccumulationofelectrondensityintheinternuclearregion.(b)Inanantibondingorbital,thenucleiareattractedtoanaccumulationofelectrondensityoutsidetheinternuclearregion.Apartialexplanationoftheo235.2.Molecularorbitaltheory(MOtheory)1.ThemolecularHamiltonianAmoleculeconsistsofnumberofelectronsandnuclei.ThemolecularHamiltonianoperator

hasacomplicatedform.

=(1,2,N):(WithintheBorn--Oppenheimerapproximation)MainapproximationofabinitioMOtheory

theBorn--OppenheimerapproximationTheorbitalapproximationNon-relativityapproximation5.2.Molecularorbitaltheory242.Themolecularwavefunctions(molecularorbitals)Solet'sconsiderasimplerproblem,involvingtheone-electronhamiltonianSeparationofvariables(1,2,3…N)2.Themolecularwavefunction25(1,2,…,N)=det{(1)(1)(2)(2)…(N)(N)}3.Variationalparameter,orD=C?CDiscalledthedensitymatrix,aproductofAO--MOcoefficientmatrices(1,2,…,N)=det{(1)(1)(2)264.Hartree-FockequationsLetslookatageneralexampleoffunctionalvariationWritingtheenergyaswewantE=0,soThus4.Hartree-FockequationsLets27Itisclearthatthiscanbewrittenasamatrixproduct,andisinfactaneigenvalueequationintheform

Hc=ScEwecanrewritetheHartree-FockequationsasUsingthefactthat

isdiagonal,thiscanbewrittenasthematrixproduct

FC=SC

www.adi.uam.es\Docs\Knowledge\Fundamental_Theory\hf\hf.htmlItisclearthatthiscanbew28CapabilitiesofabinitioquantumchemistryCancalculatewavefunctionsanddetaileddescriptionsofmolecularorbitalsCancalculateatomiccharges,dipolemoments,multipolemoments,polarisabilities,etc.Cancalculatevibrationalfrequencies,IRandRamanintensities,NMRchemicalshiftsCancalculateionisationenergiesandelectronaffinitiesCanincludetheelectrostaticeffectsonsolvationCancalculatethegeometriesandenergiesofequilibriumstructures,transitionstructures,intermediates,andneutralandchargedspeciesCancalculategroundandexcitedstatesCanhandleanyelectronconfigurationCanhandleanyelementCanoptimisegeometriesCapabilitiesofabinitioquan295.3TheHuckelMoleculorOrbitalmethod(HMO)HMOdealwithconjugatedmolecules.Butadiene,e.g.:61s+4(1s22s22px12py12pz0)=26AOHMOapproximation:4pz.Inhisapproach,Theorbitalsaretreatedseparatelyfromtheorbitals,andthelatterformarigidframeworkthatdeterminetheshapeofthemolecule.⑴HuckelapproximationIHMOissuggestedbyEricHückelin1931.5.3TheHuckelMoleculorOrb30Butadiene4pzofCatomsButadiene4pzofCatoms31Theenergyandcoefficientssatisfythefollowingequations:let

Thebestmolecularorbitalsarethosewhichminimisethetotalenergy.Thisisachievedbyimposingthecondition::Theenergyandcoefficientss32⑵HuckelapproximationII:non-trivialsolutions:Thesevalues,calledthenon-trivialsolutionstotheseequations,occurwhen:⑵HuckelapproximationII:no33letThisdeterminantcanbeeasilymultipliedouttogive:x4-3x2+1=0letThisdeterminantcanbeeas341=0.37171+0.60152+0.60153+0.371742=0.60151+0.37172—0.37173—0.601543=0.60151—0.37172—0.37173+0.601544=0.37171—0.60152+0.60153—0.37174<0,soE1<E2<E3<E4WeobtainfourvaluesofE,whichisreasonablesinceweexpecttofindfourmolecularorbitals.1=0.37171+0.60152+0.60153+35DelocalizationenergyTotalenergyE=2E1+2E2=2×(+1.62)+2×(+0.62)=4+4.48EnergylevelsOccupiedorbitalUnfilledorbitalC=C—C=CE’=4+4E-E’=0.48FrontierorbitalsThehighestoccupiedmolecularorbital,HOMOThelowestunfilledmolecularorbital,LUMOThefrontierorbitalsareimportantbecausetheyarelargelyresponsibleformanyofthechemicalandspectroscopicpropertiesofthemolecule.DelocalizationenergyEnergyl366.3Many-electronatoms1TheSchr?dingerequationofmany-electronatoms(Born-Oppenheimer

Approximation)Unfortunately,precisesolutionsarenotavailablethroughtheSchr?dingerequation,evenforthesimplestmany-electron,helium,because6.3Many-electronatoms1The37

⑴IndependentparticlemodelTheSchr?dingerequationSeparationofvariables⑴IndependentparticlemodelT38

⑵MeanfieldmodelAnelectronatadistancerfromthenucleusexperiencesaCoulombicrepulsionfromalltheelectronswithinasphereofradiusrandwhichisequivalenttoapointnegativechargelocatedonthenucleus.,

n=1,2,3,……⑵MeanfieldmodelAnelectro39Symmetric,Bosons

Antisymmetric,Fermions

⑵ThePauliprinciple

Allelectronicwavefunctionsmustbeantisymmetricundertheinterchangeofanytwoelectrons.2IdenticalparticlesandthePauliprinciple⑴IdenticalparticlesIdenticalparticlescannotbedistinguishedbymeansofanyintrinsicproperties.Symmetric,BosonsAntisymmetri40⑶Slaterdeterminant—Normalizationconstant(i)(ii)Notwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑶Slaterdeterminant—Normaliz41

4Electronconfigurations⑴ThePauliexclusionprincipleNotwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑵Groundstateelectronconfiguration—Aufbauprinciple4Electronconfigurations⑴T42⑶Hund’sruleElectronsoccupytheorbitalsofasubshellsinglyuntileachorbitalhasoneelectron.p6,d10,f14

p3,d5,f7

p0,d0,f0⑶Hund’srulep6,d10,f14 43⑵Atomicunits1a.umass=themassofelectronm=9.109×1028g1a.ucharge=thechargeofprotone=1.602×10-19C1a.ulength=Bohrradius1a.uenergy=e2/a0=27.2eVTheH2+hastwoprotonsandoneelectronandcanbedescribedusingtheSchr?dingerequation5Molecules5.1Hydrogen

Molecule

Ion(H2+)⑴TheSchr?dingerequationofH2+⑵Atomicunits1a.umass=the44⑶TheSchr?dingerequationofH2+ina.u①TheHamiltoniana.u②Schr?dingerequation⑷Thevariationtheorem①Thevariationtheoremforalinearexpansion⑶TheSchr?dingerequationof45①TheestimatedwavefunctionTheestimatedwavefunctionhastosatisfysomeconditions.NotethatwehavetousethecorrectHamiltonianforthesystem,butwedonotknowhowtosolvetheSchr?dingerequationforthisHamiltonian.Thevariationtheoremtellsusthat:<E>ETheexpectationvalueoftheenergyisalwayshigherthanthecorrectresult.

MolecularOrbital--aLinearCombinationofAtomicOrbitalsLCAO-MO①Theestimatedwavefunction46②Expectationvalueoftheenergy〈E〉Theproblemisamaximum-minimumproblemincalculus.Wemusthave:③Thewavefunction⑸ThesolutionofSchrodingerequationofH2+②Expectationvalueoftheen47LCAO-MOR→∞,ra→∞,①TheestimatedwavefunctionIfR→∞,ra→∞,thenLCAO-MOR→∞,ra→∞,①Theesti48②TheenergyofH2+②TheenergyofH2+49Alltheintegralsabovecaninprinciplebeevaluated.Weknowthefunctionsandtheoperator.Wewilljustgivethemnames:soTheseequationsarecalledlinearhomogeneousequations.Alltheintegralsabovecanin50TheseculardeterminantHaa=Hbb,

Hab=Hba,

Sab=Sba,and

c1=c2

Theimportantquestioniswhetherthereisasolutionotherthanthetrivialsolution.Thereis.Thewavefunctiondisappears(thetrivialsolution)forallvaluesof<E>exceptforthevaluesof<E>thatsatisfythedeterminantequation:

c1=-c2TheseculardeterminantHaa=Hbb51③ApproximatewavefunctionsolvetheequationforE1NormalizationsolvetheequationforE2SoNormalization③Approximatewavefunctionsol52④TheintegralsSab,HaaandHab

(i)Sab—theoverlapintegralR0,soSab0.IfR=0,Sab=1;R=∞,Sab=0.④TheintegralsSab,HaaandH53

(ii)Haa—Coulombintegral(ii)Haa—Coulombintegral54(iii)Hab—exchangeintegral(integral)R>0,soHab<0,HabR↑,|Hab|↓,Sab<<1,E1=Haa+Hab=+

,E2=Haa-Hab=-

HaaEa,soE1=Ea+

,E2=Ea-

(iii)Hab—exchangeintegral(55⑤Discussion(i)Theenergyof1and2Thecalculatedandexperimentalmolecularpotentialenergycurvesforahydrogenmolecule-ion.(ii)Bondingorbital1⑤Discussion(i)Theenergyof56Theelectrondensitycalculatedbyformingthesquareofthewavefunction.Notetheaccumulationofelectrondensityintheinternuclearregion.Theboundarysurfaceofa(orbitalenclosestheregionwheretheelectronsthatoccupytheorbitalaremostlikelytobefound.Notethattheorbitalhascylindricalsymmetry.Theelectrondensitycalculate57(iii)Antibondingorbital2(iii)Antibondingorbital258Apartialexplanationoftheoriginofbondingandantibondingeffects.(a)Inabondingorbital,thenucleiareattractedtotheaccumulationofelectrondensityintheinternuclearregion.(b)Inanantibondingorbital,thenucleiareattractedtoanaccumulationofelectrondensityoutsidetheinternuclearregion.Apartialexplanationoftheo595.2.Molecularorbitaltheory(MOtheory)1.ThemolecularHamiltonianAmoleculeconsistsofnumberofelectronsandnuclei.ThemolecularHamiltonianoperator

hasacomplicatedform.

=(1,2,N):(WithintheBorn--Oppenheimerapproximation)MainapproximationofabinitioMOtheory

theBorn--OppenheimerapproximationTheorbitalapproximationNon-relativityapproximation5.2.Molecularorbitaltheory602.Themolecularwavefunctions(molecularorbitals)Solet'sconsiderasimplerproblem,involvingtheone-electronhamiltonianSeparationofvariables(1,2,3…N)2.Themolecularwavefunction61(1,2,…,N)=det{(1)(1)(2)(2)…(N)(N)}3.Variationalparameter,orD=C?CDiscalledthedensitymatrix,aproductofAO--MOcoefficientmatrices(1,2,…,N)=det{(1)(1)(2)624.Hartree-FockequationsLetslookatageneralexampleoffunctionalvariationWritingtheenergyaswewantE=0,soThus4.Hartree-FockequationsLets63Itisclearthatthiscanbewrittenasamatrixproduct,andisinfactaneigenvalueequationintheform

Hc=ScEwecanrewritetheHartree-FockequationsasUsingthefactthat

isdiagonal,thiscanbewrittenasthematrixproduct

FC=SC

www.adi.uam.es\Docs\Knowledge\Fundamental_Theory\hf\hf.htmlItisclearthatthiscanbew64CapabilitiesofabinitioquantumchemistryCancalculatewavefunctionsanddetaileddescriptionsofmolecularorbitalsCancalculateatomiccharges,dipolemoments,multipolemoments,polarisabilities,etc.Cancalculatevibrationalfrequencies,IRandRamanintensities,NMRchemicalshiftsCancalculateionisationenergiesandelectronaffinitiesCanincludetheelectrostaticeffectsonsolvationCancalculatethegeometriesandenergiesofequilibriumstructures,transitionstructures,intermediates,andneutralandchargedspeciesCancalculategroundandexcitedstatesCanhandleanyelectronconfigurationCanhandleanyelementCanoptimisegeometriesCapabilitiesofabiniti

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論