北京市首都師大附中2023年中考五模數(shù)學試題含答案解析_第1頁
北京市首都師大附中2023年中考五模數(shù)學試題含答案解析_第2頁
北京市首都師大附中2023年中考五模數(shù)學試題含答案解析_第3頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北京市首都師大附中2023年中考五模數(shù)學測試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列計算正確的是()A.2m+3n=5mnB.m2?m3=m6C.m8÷m6=m2D.(﹣m)3=m32.在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,tanA的值為()A. B. C. D.33.如圖,點A為∠α邊上任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示cosα的值,錯誤的是(

)A. B. C. D.4.如圖,AD是⊙O的弦,過點O作AD的垂線,垂足為點C,交⊙O于點F,過點A作⊙O的切線,交OF的延長線于點E.若CO=1,AD=2,則圖中陰影部分的面積為A.4-π B.2-πC.4-π D.2-π5.夏新同學上午賣廢品收入13元,記為+13元,下午買舊書支出9元,記為()元.A.+4B.﹣9C.﹣4D.+96.計算-5+1的結(jié)果為()A.-6 B.-4 C.4 D.67.下列運算正確的是()A.a(chǎn)12÷a4=a3 B.a(chǎn)4?a2=a8 C.(﹣a2)3=a6 D.a(chǎn)?(a3)2=a78.將一副三角板按如圖方式擺放,∠1與∠2不一定互補的是()A. B. C. D.9.計算3a2-a2的結(jié)果是()A.4a2B.3a2C.2a2D.310.若關于x的不等式組恰有3個整數(shù)解,則字母a的取值范圍是()A.a(chǎn)≤﹣1 B.﹣2≤a<﹣1 C.a(chǎn)<﹣1 D.﹣2<a≤﹣1二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,平行四邊形ABCD中,AB=AC=4,AB⊥AC,O是對角線的交點,若⊙O過A、C兩點,則圖中陰影部分的面積之和為_____.12.如圖,AB=AC,要使△ABE≌△ACD,應添加的條件是(添加一個條件即可).13.菱形的兩條對角線長分別是方程的兩實根,則菱形的面積為______.14.分式方程的解是_____.15.方程的解為.16.若關于x的方程有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是______.三、解答題(共8題,共72分)17.(8分)(1)問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點P為AB上一點,當∠DPC=∠A=∠B=θ時,上述結(jié)論是否依然成立.說明理由.(3)應用:請利用(1)(2)獲得的經(jīng)驗解決問題:如圖3,在△ABD中,AB=6,AD=BD=1.點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A.設點P的運動時間為t(秒),當DC的長與△ABD底邊上的高相等時,求t的值.18.(8分)計算19.(8分)已知a2+2a=9,求的值.20.(8分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.求小明選擇去白鹿原游玩的概率;用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.21.(8分)化簡求值:,其中x是不等式組的整數(shù)解.22.(10分)如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.求∠ABC的度數(shù);求證:AE是⊙O的切線;當BC=4時,求劣弧AC的長.23.(12分)網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關注,有關部門在全國范圍內(nèi)對12﹣35歲的網(wǎng)癮人群進行了簡單的隨機抽樣調(diào)查,繪制出以下兩幅統(tǒng)計圖.請根據(jù)圖中的信息,回答下列問題:(1)這次抽樣調(diào)查中共調(diào)查了人;(2)請補全條形統(tǒng)計圖;(3)扇形統(tǒng)計圖中18﹣23歲部分的圓心角的度數(shù)是;(4)據(jù)報道,目前我國12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請估計其中12﹣23歲的人數(shù)24.已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(點A在點B的左側(cè)),拋物線的頂點為C,直線y=x+3與x軸交于點D.(1)求拋物線的頂點C的坐標及A,B兩點的坐標;(2)將拋物線y=x2﹣6x+9向上平移1個單位長度,再向左平移t(t>0)個單位長度得到新拋物線,若新拋物線的頂點E在△DAC內(nèi),求t的取值范圍;(3)點P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點,當△PAB的面積是△ABC面積的2倍時,求m,n的值.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(共10小題,每小題3分,共30分)1、C【答案解析】

根據(jù)同底數(shù)冪的除法,底數(shù)不變指數(shù)相減;合并同類項,系數(shù)相加字母和字母的指數(shù)不變;同底數(shù)冪的乘法,底數(shù)不變指數(shù)相加;冪的乘方,底數(shù)不變指數(shù)相乘,對各選項計算后利用排除法求解.【題目詳解】解:A、2m與3n不是同類項,不能合并,故錯誤;B、m2?m3=m5,故錯誤;C、正確;D、(-m)3=-m3,故錯誤;故選:C.【答案點睛】本題考查同底數(shù)冪的除法,合并同類項,同底數(shù)冪的乘法,冪的乘方很容易混淆,一定要記準法則才能做題.2、B【答案解析】

根據(jù)勾股定理和三角函數(shù)即可解答.【題目詳解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,設a=x,則c=3x,b==2x.即tanA==.故選B.【答案點睛】本題考查勾股定理和三角函數(shù),熟悉掌握是解題關鍵.3、D【答案解析】

根據(jù)銳角三角函數(shù)的定義,余弦是鄰邊比斜邊,可得答案.【題目詳解】cosα=.故選D.【答案點睛】熟悉掌握銳角三角函數(shù)的定義是關鍵.4、B【答案解析】

由S陰影=S△OAE-S扇形OAF,分別求出S△OAE、S扇形OAF即可;【題目詳解】連接OA,OD

∵OF⊥AD,

∴AC=CD=,

在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,

則∠DOA=120°,OA=2,

∴Rt△OAE中,∠AOE=60°,OA=2

∴AE=2,S陰影=S△OAE-S扇形OAF=×2×2-.故選B.【答案點睛】考查了切線的判定和性質(zhì);能夠通過作輔助線將所求的角轉(zhuǎn)移到相應的直角三角形中,是解答此題的關鍵要證某線是圓的切線,對于切線的判定:已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.5、B【答案解析】

收入和支出是兩個相反的概念,故兩個數(shù)字分別為正數(shù)和負數(shù).【題目詳解】收入13元記為+13元,那么支出9元記作-9元【答案點睛】本題主要考查了正負數(shù)的運用,熟練掌握正負數(shù)的概念是本題的關鍵.6、B【答案解析】

根據(jù)有理數(shù)的加法法則計算即可.【題目詳解】解:-5+1=-(5-1)=-1.故選B.【答案點睛】本題考查了有理數(shù)的加法.7、D【答案解析】

分別根據(jù)同底數(shù)冪的除法、乘法和冪的乘方的運算法則逐一計算即可得.【題目詳解】解:A、a12÷a4=a8,此選項錯誤;

B、a4?a2=a6,此選項錯誤;

C、(-a2)3=-a6,此選項錯誤;

D、a?(a3)2=a?a6=a7,此選項正確;

故選D.【答案點睛】本題主要考查冪的運算,解題的關鍵是掌握同底數(shù)冪的除法、乘法和冪的乘方的運算法則.8、D【答案解析】A選項:∠1+∠2=360°-90°×2=180°;B選項:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C選項:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D選項:∠1和∠2不一定互補.故選D.點睛:本題主要掌握平行線的性質(zhì)與判定定理,關鍵在于通過角度之間的轉(zhuǎn)化得出∠1和∠2的互補關系.9、C【答案解析】【分析】根據(jù)合并同類項法則進行計算即可得.【題目詳解】3a2-a2=(3-1)a2=2a2,故選C.【答案點睛】本題考查了合并同類項,熟記合并同類項的法則是解題的關鍵.合并同類項就是把同類項的系數(shù)相加減,字母和字母的指數(shù)不變.10、B【答案解析】

根據(jù)“同大取大,同小取小,大小小大取中間,大大小小無解”即可求出字母a的取值范圍.【題目詳解】解:∵x的不等式組恰有3個整數(shù)解,∴整數(shù)解為1,0,-1,∴-2≤a<-1.故選B.【答案點睛】本題考查了一元一次不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【答案解析】

∵∠AOB=∠COD,∴S陰影=S△AOB.∵四邊形ABCD是平行四邊形,∴OA=AC=×1=2.∵AB⊥AC,∴S陰影=S△AOB=OA?AB=×2×1=1.【答案點睛】本題考查了扇形面積的計算.12、AE=AD(答案不唯一).【答案解析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,則可以添加AE=AD,利用SAS來判定其全等;或添加∠B=∠C,利用ASA來判定其全等;或添加∠AEB=∠ADC,利用AAS來判定其全等.等(答案不唯一).13、2【答案解析】

解:x2﹣14x+41=0,則有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面積為:(6×1)÷2=2.菱形的面積為:2.故答案為2.點睛:本題考查菱形的性質(zhì).菱形的對角線互相垂直,以及對角線互相垂直的四邊形的面積的特點和根與系數(shù)的關系.14、x=13【答案解析】

解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗;④得出結(jié)論.【題目詳解】,去分母,可得x﹣5=8,解得x=13,經(jīng)檢驗:x=13是原方程的解.【答案點睛】本題主要考查了解分式方程,解分式方程時,去分母后所得整式方程的解有可能使原方程中的分母為0,所以應檢驗.15、.【答案解析】測試卷分析:首先去掉分母,觀察可得最簡公分母是,方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解,然后解一元一次方程,最后檢驗即可求解:,經(jīng)檢驗,是原方程的根.16、a>﹣.【答案解析】測試卷分析:已知關于x的方程2x2+x﹣a=0有兩個不相等的實數(shù)根,所以△=12﹣4×2×(﹣a)=1+8a>0,解得a>﹣.考點:根的判別式.三、解答題(共8題,共72分)17、(2)證明見解析;(2)結(jié)論成立,理由見解析;(3)2秒或2秒.【答案解析】

(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;(3)過點D作DE⊥AB于點E,根據(jù)等腰三角形的性質(zhì)可得AE=BE=3,根據(jù)勾股定理可得DE=4,由題可得DC=DE=4,則有BC=2-4=2.易證∠DPC=∠A=∠B.根據(jù)ADBC=APBP,就可求出t的值.【題目詳解】解:(2)如圖2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴ADBC=APBP;(2)結(jié)論ADBC=APBP仍成立;證明:如圖2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴ADBC=APBP;(3)如下圖,過點D作DE⊥AB于點E,∵AD=BD=2,AB=6,∴AE=BE=3∴DE==4,∵以D為圓心,以DC為半徑的圓與AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的經(jīng)驗得AD?BC=AP?BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值為2秒或2秒.【答案點睛】本題考查圓的綜合題.18、【答案解析】

先把括號內(nèi)通分,再把除法運算化為乘法運算,然后把分子分母因式分解后約分即可.【題目詳解】原式=,=,=,=.【答案點睛】本題考查了分式的混合運算:分式的混合運算,要注意運算順序,式與數(shù)有相同的混合運算順序;先乘方,再乘除,然后加減,有括號的先算括號里面的;最后結(jié)果分子、分母要進行約分,注意運算的結(jié)果要化成最簡分式或整式.19、,.【答案解析】測試卷分析:原式第二項利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算得到最簡結(jié)果,把已知等式變形后代入計算即可求出值.測試卷解析:===,∵a2+2a=9,∴(a+1)2=1.∴原式=.20、(1);(2)【答案解析】

(1)利用概率公式直接計算即可;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與小明和小華都選擇去同一個地方游玩的情況,再利用概率公式即可求得答案.【題目詳解】(1)∵小明準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,∴小明選擇去白鹿原游玩的概率=;(2)畫樹狀圖分析如下:兩人選擇的方案共有16種等可能的結(jié)果,其中選擇同種方案有1種,所以小明和小華都選擇去秦嶺國家植物園游玩的概率=.【答案點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,求出概率.21、當x=﹣3時,原式=﹣,當x=﹣2時,原式=﹣1.【答案解析】

先化簡分式,再解不等式組求得x的取值范圍,在此范圍內(nèi)找到符合分式有意義的x的整數(shù)值,代入計算可得.【題目詳解】原式=÷=?=,解不等式組,解不等式①,得:x>﹣4,解不等式②,得:x≤﹣1,∴不等式組的解集為﹣4<x≤﹣1,∴不等式的整數(shù)解是﹣3,﹣2,﹣1.又∵x+1≠0,x﹣1≠0∴x≠±1,∴x=﹣3或x=﹣2,當x=﹣3時,原式=﹣,當x=﹣2時,原式=﹣1.【答案點睛】本題考查了分式的化簡求值及一元一次不等式組的整數(shù)解,求分式的值時,一定要選擇使每個分式都有意義的未知數(shù)的值.22、(1)60°;(2)證明略;(3)【答案解析】

(1)根據(jù)∠ABC與∠D都是劣弧AC所對的圓周角,利用圓周角定理可證出∠ABC=∠D=60°;

(2)根據(jù)AB是⊙O的直徑,利用直徑所對的圓周角是直角得到∠ACB=90°,結(jié)合∠ABC=60°求得∠BAC=30°,從而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切線;

(3)連結(jié)OC,證出△OBC是等邊三角形,算出∠BOC=60°且⊙O的半徑等于4,可得劣弧AC所對的圓心角∠AOC=120°,再由弧長公式加以計算,可得劣弧AC的長.【題目詳解】(1)∵∠ABC與∠D都是弧AC所對的圓周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直徑,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切線;(3)如圖,連接OC,∵OB=OC,∠ABC=60°,∴△OBC是等邊三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的長為==.【答案點睛】本題考查了切線長定理及弧長公式,熟練掌握定理及公式是解題的關鍵.23、(1)1500;(2)見解析;(3)108°;(3)12~23歲的人數(shù)為400萬【答案解析】測試卷分析:(1)根據(jù)30-35歲的人數(shù)和所占的百分比求調(diào)查的人數(shù);(2)從調(diào)查的總?cè)藬?shù)中減去已知的三組的人數(shù),即可得到12-17歲的人數(shù),據(jù)此補全條形統(tǒng)計圖;(3)先計算18-23歲的人數(shù)占調(diào)查總?cè)藬?shù)的百分比,再計算這一組所對應的圓心角的度數(shù);(4)先計算調(diào)查中12﹣23歲的人數(shù)所占的百分比,再求網(wǎng)癮人數(shù)約為2000萬中的12﹣23歲的人數(shù).測試卷解析:解:(1)結(jié)合條形統(tǒng)計圖和扇形統(tǒng)計圖可知,30-35歲的人數(shù)為330人,所占的百分比為22%,所以調(diào)查的總?cè)藬?shù)為330÷22%=1500人.故答案為1500;(2)1500-450-420-330=300人.補全的條形統(tǒng)計圖如圖:(3)18-23歲這一組所對應的圓心角的度數(shù)為360×=108°.故答案為108°;(4)(300+450)÷1500=50%,.考點:條形統(tǒng)計圖;扇形統(tǒng)計圖.24、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【答案解析】分析:(Ⅰ)將拋物線的一般式配方為頂點式即可求出點C的坐標,聯(lián)立拋物線與直線的解析式即可求出A、B的坐標.(Ⅱ)由題意可知:新拋物線的頂點坐標為(2﹣t,1),然后求出直線AC的解析式后,將點E的坐標分別代入直線AC與AD的解析式中即可求出t的值,從而可知新拋物線的頂點E在△DAC內(nèi),求t的取值范圍.(Ⅲ)直線AB與y軸交于點F,連接CF,過點P作PM⊥AB于點M,PN⊥x軸于點N,交DB于點G,由直線y=x+2與x軸交于點D,與y軸交于點F,得D(﹣2,0),F(xiàn)(0,2),易得CF⊥AB,△PAB的面積是△ABC面積的2倍,所以AB?PM=AB?CF,PM=2CF=1,從而可求出PG=3,利用點G在直線y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在拋物線y=x2﹣1x+9上,聯(lián)立方程從而可求出m、n

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論