四川中江縣春季聯考2023學年中考猜題數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.不等式3x≥x-5的最小整數解是()A.-3 B.-2 C.-1 D.22.在下列四個新能源汽車車標的設計圖中,屬于中心對稱圖形的是()A. B. C. D.3.一小組8位同學一分鐘跳繩的次數如下:150,176,168,183,172,164,168,185,則這組數據的中位數為()A.172 B.171 C.170 D.1684.若關于x的不等式組無解,則m的取值范圍()A.m>3 B.m<3 C.m≤3 D.m≥35.定義:若點P(a,b)在函數y=1x的圖象上,將以a為二次項系數,b為一次項系數構造的二次函數y=ax2+bx稱為函數y=1x的一個“派生函數”.例如:點(2,12)在函數y=1x的圖象上,則函數y=2x2+(1)存在函數y=1x(2)函數y=1xA.命題(1)與命題(2)都是真命題B.命題(1)與命題(2)都是假命題C.命題(1)是假命題,命題(2)是真命題D.命題(1)是真命題,命題(2)是假命題6.計算結果是()A.0 B.1 C.﹣1 D.x7.﹣22×3的結果是()A.﹣5 B.﹣12 C.﹣6 D.128.《九章算術》是我國古代第一部自成體系的數學專著,代表了東方數學的最高成就.它的算法體系至今仍在推動著計算機的發(fā)展和應用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1尺=10寸)”,問這塊圓形木材的直徑是多少?”如圖所示,請根據所學知識計算:圓形木材的直徑AC是()A.13寸 B.20寸 C.26寸 D.28寸9.下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B.C. D.10.我國古代數學家劉徽創(chuàng)立的“割圓術”可以估算圓周率π,理論上能把π的值計算到任意精度.祖沖之繼承并發(fā)展了“割圓術”,將π的值精確到小數點后第七位,這一結果領先世界一千多年,“割圓術”的第一步是計算半徑為1的圓內接正六邊形的面積S6,則S6的值為()A. B.2 C. D.11.如圖是一次數學活動課制作的一個轉盤,盤面被等分成四個扇形區(qū)域,并分別標有數字-1,0,1,2.若轉動轉盤兩次,每次轉盤停止后記錄指針所指區(qū)域的數字(當指針恰好指在分界線上時,不記,重轉),則記錄的兩個數字都是正數的概率為()A. B. C. D.12.點P(1,﹣2)關于y軸對稱的點的坐標是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知:如圖,矩形ABCD中,AB=5,BC=3,E為AD上一點,把矩形ABCD沿BE折疊,若點A恰好落在CD上點F處,則AE的長為_____.14.如圖,點A的坐標為(3,),點B的坐標為(6,0),將△AOB繞點B按順時針方向旋轉一定的角度后得到△A′O′B,點A的對應點A′在x軸上,則點O′的坐標為_____.15.如果a2﹣a﹣1=0,那么代數式(a﹣)的值是.16.若代數式有意義,則實數x的取值范圍是____.17.若點(a,b)在一次函數y=2x-3的圖象上,則代數式4a-2b-3的值是__________18.已知二次函數,與的部分對應值如下表所示:…-101234……61-2-3-2m…下面有四個論斷:①拋物線的頂點為;②;③關于的方程的解為;④.其中,正確的有___________________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平行四邊形ABCD中,DB⊥AB,點E是BC邊的中點,過點E作EF⊥CD,垂足為F,交AB的延長線于點G.(1)求證:四邊形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.20.(6分)如圖,矩形中,點是線段上一動點,為的中點,的延長線交BC于.(1)求證:;(2)若,,從點出發(fā),以l的速度向運動(不與重合).設點運動時間為,請用表示的長;并求為何值時,四邊形是菱形.21.(6分)(1)計算:(a-b)2-a(a-2b);(2)解方程:=.22.(8分)某翻譯團為成為2023年冬奧會志愿者做準備,該翻譯團一共有五名翻譯,其中一名只會翻譯西班牙語,三名只會翻譯英語,還有一名兩種語言都會翻譯.求從這五名翻譯中隨機挑選一名會翻譯英語的概率;若從這五名翻譯中隨機挑選兩名組成一組,請用樹狀圖或列表的方法求該紐能夠翻譯上述兩種語言的概率.23.(8分)為加快城鄉(xiāng)對接,建設全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.開通隧道前,汽車從A地到B地大約要走多少千米?開通隧道后,汽車從A地到B地大約可以少走多少千米?(結果精確到0.1千米)(參考數據:≈1.41,≈1.73)24.(10分)某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取進行調查,根據調查結果繪制了如下不完整的頻數分布表和扇形統(tǒng)計圖:運動項目
頻數(人數)
羽毛球
30
籃球
乒乓球
36
排球
足球
12
請根據以上圖表信息解答下列問題:頻數分布表中的,;在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為度;全校有多少名學生選擇參加乒乓球運動?25.(10分)如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動點P從點C出發(fā),在BC邊上以每秒cm的速度向點B勻速運動,同時動點Q也從點C出發(fā),沿C→A→B以每秒4cm的速度勻速運動,運動時間為t秒,連接PQ,以PQ為直徑作⊙O.(1)當時,求△PCQ的面積;(2)設⊙O的面積為s,求s與t的函數關系式;(3)當點Q在AB上運動時,⊙O與Rt△ABC的一邊相切,求t的值.26.(12分)如圖,△ABC內接于⊙O,CD是⊙O的直徑,AB與CD交于點E,點P是CD延長線上的一點,AP=AC,且∠B=2∠P.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑;(3)在(2)的條件下,若點B等分半圓CD,求DE的長.27.(12分)已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.(1)求證:四邊形ENFM為平行四邊形;(2)當四邊形ENFM為矩形時,求證:BE=BN.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【答案解析】
先求出不等式的解集,然后從解集中找出最小整數即可.【題目詳解】∵3x≥x-5,∴3x-x≥-5,∴x≥-5∴不等式3x≥x-5的最小整數解是x=-2.故選B.【答案點睛】本題考查了一元一次不等式的解法,熟練掌握解一元一次不等式的步驟是解答本題的關鍵.最后一步系數化為1時,如果未知數的系數是負數,則不等號的方向要改變,如果系數是正數,則不等號的方不變.2、D【答案解析】
根據中心對稱圖形的概念求解.【題目詳解】解:A.不是中心對稱圖形,本選項錯誤;B.不是中心對稱圖形,本選項錯誤;C.不是中心對稱圖形,本選項錯誤;D.是中心對稱圖形,本選項正確.故選D.【答案點睛】本題主要考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.3、C【答案解析】
先把所給數據從小到大排列,然后根據中位數的定義求解即可.【題目詳解】從小到大排列:150,164,168,168,,172,176,183,185,∴中位數為:(168+172)÷2=170.故選C.【答案點睛】本題考查了中位數,如果一組數據有奇數個,那么把這組數據從小到大排列后,排在中間位置的數是這組數據的中位數;如果一組數據有偶數個,那么把這組數據從小到大排列后,排在中間位置的兩個數的平均數是這組數據的中位數.4、C【答案解析】
根據“大大小小找不著”可得不等式2+m≥2m-1,即可得出m的取值范圍.【題目詳解】,由①得:x>2+m,由②得:x<2m﹣1,∵不等式組無解,∴2+m≥2m﹣1,∴m≤3,故選C.【答案點睛】考查了解不等式組,根據求不等式的無解,遵循“大大小小解不了”原則得出是解題關鍵.5、C【答案解析】測試卷分析:(1)根據二次函數y=ax2+bx的性質a、b同號對稱軸在y軸左側,a、b異號對稱軸在y軸右側即可判斷.(2)根據“派生函數”y=ax2+bx,x=0時,y=0,經過原點,不能得出結論.(1)∵P(a,b)在y=上,∴a和b同號,所以對稱軸在y軸左側,∴存在函數y=的一個“派生函數”,其圖象的對稱軸在y軸的右側是假命題.(2)∵函數y=的所有“派生函數”為y=ax2+bx,∴x=0時,y=0,∴所有“派生函數”為y=ax2+bx經過原點,∴函數y=的所有“派生函數”,的圖象都進過同一點,是真命題.考點:(1)命題與定理;(2)新定義型6、C【答案解析】測試卷解析:.故選C.考點:分式的加減法.7、B【答案解析】
先算乘方,再算乘法即可.【題目詳解】解:﹣22×3=﹣4×3=﹣1.故選:B.【答案點睛】本題主要考查了有理數的混合運算,熟練掌握法則是解答本題的關鍵.有理數的混合運算,先乘方,再乘除,后加減,有括號的先算括號內的.8、C【答案解析】分析:設⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解方程即可.詳解:設⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解得r=13,∴⊙O的直徑為26寸,故選C.點睛:本題考查垂徑定理、勾股定理等知識,解題的關鍵是學會利用參數構建方程解決問題9、A【答案解析】分析:根據中心對稱圖形的定義旋轉180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,即可判斷出答案.詳解:A、此圖形是中心對稱圖形,不是軸對稱圖形,故此選項正確;B、此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;C、此圖形是中心對稱圖形,也是軸對稱圖形,故此選項錯誤;D、此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤.故選A.點睛:此題主要考查了中心對稱圖形與軸對稱的定義,關鍵是找出圖形的對稱中心與對稱軸.10、C【答案解析】
根據題意畫出圖形,結合圖形求出單位圓的內接正六邊形的面積.【題目詳解】如圖所示,單位圓的半徑為1,則其內接正六邊形ABCDEF中,△AOB是邊長為1的正三角形,所以正六邊形ABCDEF的面積為S6=6××1×1×sin60°=.故選C.【答案點睛】本題考查了已知圓的半徑求其內接正六邊形面積的應用問題,關鍵是根據正三角形的面積,正n邊形的性質解答.11、C【答案解析】
列表得,
1
2
0
-1
1
(1,1)
(1,2)
(1,0)
(1,-1)
2
(2,1)
(2,2)
(2,0)
(2,-1)
0
(0,1)
(0,2)
(0,0)
(0,-1)
-1
(-1,1)
(-1,2)
(-1,0)
(-1,-1)
由表格可知,總共有16種結果,兩個數都為正數的結果有4種,所以兩個數都為正數的概率為,故選C.考點:用列表法(或樹形圖法)求概率.12、C【答案解析】關于y軸對稱的點,縱坐標相同,橫坐標互為相反數,由此可得P(1,﹣2)關于y軸對稱的點的坐標是(﹣1,﹣2),故選C.【答案點睛】本題考查了關于坐標軸對稱的點的坐標,正確地記住關于坐標軸對稱的點的坐標特征是關鍵.關于x軸對稱的點的坐標特點:橫坐標不變,縱坐標互為相反數;關于y軸對稱的點的坐標特點:縱坐標不變,橫坐標互為相反數.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【答案解析】
根據矩形的性質得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根據折疊得到BF=AB=5,EF=EA,根據勾股定理求出CF,由此得到DF的長,再根據勾股定理即可求出AE.【題目詳解】∵矩形ABCD中,AB=5,BC=3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折疊的性質可知,BF=AB=5,EF=EA,在Rt△BCF中,CF==4,∴DF=DC﹣CF=1,設AE=x,則EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=,故答案為:.【答案點睛】此題考查矩形的性質,勾股定理,折疊的性質,由折疊得到BF的長度是解題的關鍵.14、(,)【答案解析】
作AC⊥OB、O′D⊥A′B,由點A、B坐標得出OC=3、AC=、BC=OC=3,從而知tan∠ABC==,由旋轉性質知BO′=BO=6,tan∠A′BO′=tan∠ABO==,設O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的長即可.【題目詳解】如圖,過點A作AC⊥OB于C,過點O′作O′D⊥A′B于D,
∵A(3,),
∴OC=3,AC=,
∵OB=6,
∴BC=OC=3,
則tan∠ABC==,
由旋轉可知,BO′=BO=6,∠A′BO′=∠ABO,
∴==,
設O′D=x,BD=3x,
由O′D2+BD2=O′B2可得(x)2+(3x)2=62,
解得:x=或x=?(舍),
則BD=3x=,O′D=x=,
∴OD=OB+BD=6+=,
∴點O′的坐標為(,).【答案點睛】本題考查的是圖形的旋轉,熟練掌握勾股定理和三角函數是解題的關鍵.15、1【答案解析】分析:先由a2﹣a﹣1=0可得a2﹣a=1,再把(a﹣)的第一個括號內通分,并把分子分解因式后約分化簡,然后把a2﹣a=1代入即可.詳解:∵a2﹣a﹣1=0,即a2﹣a=1,∴原式===a(a﹣1)=a2﹣a=1,故答案為1點睛:本題考查了分式的化簡求值,解題的關鍵是正確掌握分式混合運算的順序:先算乘除,后算加減,有括號的先算括號里,整體代入法是求代數式的值常用的一種方法.16、x≠﹣5.【答案解析】
根據分母不為零分式有意義,可得答案.【題目詳解】由題意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.【答案點睛】本題考查了分式有意義的條件,利用分母不為零分式有意義得出不等式是解題關鍵.17、1【答案解析】
根據題意,將點(a,b)代入函數解析式即可求得2a-b的值,變形即可求得所求式子的值.【題目詳解】∵點(a,b)在一次函數y=2x-1的圖象上,∴b=2a-1,∴2a-b=1,∴4a-2b=6,∴4a-2b-1=6-1=1,故答案為:1.【答案點睛】本題考查一次函數圖象上點的坐標特征,解答本題的關鍵是明確題意,利用一次函數的性質解答.18、①③.【答案解析】
根據圖表求出函數對稱軸,再根據圖表信息和二次函數性質逐一判斷即可.【題目詳解】由二次函數y=ax2+bx+c(a≠0),y與x的部分對應值可知:該函數圖象是開口向上的拋物線,對稱軸是直線x=2,頂點坐標為(2,-3);與x軸有兩個交點,一個在0與1之間,另一個在3與4之間;當y=-2時,x=1或x=3;由拋物線的對稱性可知,m=1;①拋物線y=ax2+bx+c(a≠0)的頂點為(2,-3),結論正確;②b2﹣4ac=0,結論錯誤,應該是b2﹣4ac>0;③關于x的方程ax2+bx+c=﹣2的解為x1=1,x2=3,結論正確;④m=﹣3,結論錯誤,其中,正確的有.①③故答案為:①③【答案點睛】本題考查了二次函數的圖像,結合圖表信息是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)【答案解析】
(1)根據矩形的判定證明即可;(2)根據平行四邊形的性質和等邊三角形的性質解答即可.【題目詳解】證明:(1)∵BD⊥AB,EF⊥CD,∴∠ABD=90°,∠EFD=90°,根據題意,在?ABCD中,AB∥CD,∴∠BDC=∠ABD=90°,∴BD∥GF,∴四邊形BDFG為平行四邊形,∵∠BDC=90°,∴四邊形BDFG為矩形;(2)∵AE平分∠BAD,∴∠BAE=∠DAE,∵AD∥BC,∴∠BEA=∠DAE,∴∠BAE=∠BEA,∴BA=BE,∵在Rt△BCD中,點E為BC邊的中點,∴BE=ED=EC,∵在?ABCD中,AB=CD,∴△ECD為等邊三角形,∠C=60°,∴,∴.【答案點睛】本題考查了矩形的判定、等邊三角形的判定和性質,根據平行四邊形的性質和等邊三角形的性質解答是解題關鍵.20、(1)證明見解析;(2)PD=8-t,運動時間為秒時,四邊形PBQD是菱形.【答案解析】
(1)先根據四邊形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根據O為BD的中點得出△POD≌△QOB,即可證得OP=OQ;(2)根據已知條件得出∠A的度數,再根據AD=8cm,AB=6cm,得出BD和OD的長,再根據四邊形PBQD是菱形時,利用勾股定理即可求出t的值,判斷出四邊形PBQD是菱形.【題目詳解】(1)∵四邊形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,又∵O為BD的中點,∴OB=OD,在△POD與△QOB中,,∴△POD≌△QOB,∴OP=OQ;(2)PD=8-t,∵四邊形PBQD是菱形,∴BP=PD=8-t,∵四邊形ABCD是矩形,∴∠A=90°,在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8-t)2,解得:t=,即運動時間為秒時,四邊形PBQD是菱形.【答案點睛】本題考查了矩形的性質,菱形的性質,全等三角形的判定與性質,勾股定理等,熟練掌握相關知識是解題關鍵.注意數形結合思想的運用.21、(1)b2(2)1【答案解析】分析:(1)、根據完全平方公式以及多項式的乘法計算法則將括號去掉,然后進行合并同類項即可得出答案;(2)、收下進行去分母,將其轉化為整式方程,從而得出方程的解,最后需要進行驗根.詳解:(1)解:原式=a2-2ab+b2-a2+2ab=b2;(2)解:,解得:x=1,經檢驗x=1為原方程的根,所以原方程的解為x=1.點睛:本題主要考查的是多項式的乘法以及解分式方程,屬于基礎題型.理解計算法則是解題的關鍵.分式方程最后必須要進行驗根.22、(1);(2).【答案解析】
(1)直接利用概率公式計算;(2)只會翻譯西班牙語用A表示,三名只會翻譯英語的用B表示,一名兩種語言都會翻譯用C表示,畫樹狀圖展示所有20種等可能的結果數,找出該組能夠翻譯上述兩種語言的結果數,然后根據概率公式求解.【題目詳解】解:(1)從這五名翻譯中隨機挑選一名會翻譯英語的概率=;(2)只會翻譯西班牙語用A表示,三名只會翻譯英語的用B表示,一名兩種語言都會翻譯用C表示畫樹狀圖為:共有20種等可能的結果數,其中該組能夠翻譯上述兩種語言的結果數為14,所以該紐能夠翻譯上述兩種語言的概率=.【答案點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.23、(1)開通隧道前,汽車從A地到B地大約要走136.4千米;(2)汽車從A地到B地比原來少走的路程為27.2千米【答案解析】
(1)過點C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD,進而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,進而求出汽車從A地到B地比原來少走多少路程.【題目詳解】解:(1)過點C作AB的垂線CD,垂足為D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC?sin30°=80×(千米),AC=(千米),AC+BC=80+40≈40×1.41+80=136.4(千米),答:開通隧道前,汽車從A地到B地大約要走136.4千米;(2)∵cos30°=,BC=80(千米),∴BD=BC?cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽車從A地到B地比原來少走多少路程為:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽車從A地到B地比原來少走的路程為27.2千米.【答案點睛】本題考查了勾股定理的運用以及解一般三角形,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.24、(1)24,1;(2)54;(3)360.【答案解析】
(1)根據選擇乒乓球運動的人數是36人,對應的百分比是30%,即可求得總人數,然后利用百分比的定義求得a,用總人數減去其它組的人數求得b;(2)利用360°乘以對應的百分比即可求得;(3)求得全??側藬?,然后利用總人數乘以對應的百分比求解.【題目詳解】(1)抽取的人數是36÷30%=120(人),則a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圓心角為360°×=54°,故答案是:54;(3)全??側藬凳?20÷10%=1200(人),則選擇參加乒乓球運動的人數是1200×30%=360(人).25、(1);(2)①;②;(3)t的值為或1或.【答案解析】
(1)先根據t的值計算CQ和CP的長,由圖形可知△PCQ是直角三角形,根據三角形面積公式可得結論;(2)分兩種情況:①當Q在邊AC上運動時,②當Q在邊AB上運動時;分別根據勾股定理計算PQ2,最后利用圓的面積公式可得S與t的關系式;(3)分別當⊙O與BC相切時、當⊙O與AB相切時,當⊙O與AC相切時三種情況分類討論即可確定答案.【題目詳解】(1)當t=時,CQ=4t=4×=2,即此時Q與A重合,CP=t=,∵∠ACB=90°,∴S△PCQ=CQ?PC=×2×=;(2)分兩種情況:①當Q在邊AC上運動時,0<t≤2,如圖1,由題意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,∴S=π=;②當Q在邊AB上運動時,2<t<4如圖2,設⊙O與AB的另一個交點為D,連接PD,∵CP=t,AC+AQ=4t,∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,∵PQ為⊙O的直徑,∴∠PDQ=90°,Rt△ACB中,AC=2cm,AB=4cm,∴∠B=30°,Rt△PDB中,PD=PB=,∴BD=,∴QD=BQ﹣BD=6﹣4t﹣=3﹣,∴PQ==,∴S=π==;(3)分三種情況:①當⊙O與AC相切時,如圖3,設切點為E,連接OE,過Q作QF⊥AC于F,∴OE⊥AC,∵AQ=4t﹣2,Rt△AFQ中,∠AQF=30°,∴AF=2t﹣1,∴FQ=(2t﹣1),∵FQ∥OE∥PC,OQ=OP,∴EF=CE,∴FQ+PC=2OE=PQ,∴(2t﹣1)+t=,解得:t=或﹣(舍);②當⊙O與BC相切時,如圖4,此時PQ⊥BC,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=1;③當⊙O與BA相切時,如圖5,此時PQ⊥BA,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=,綜上所述,t的值為或1或.【答案點睛】本題是圓的綜合題,涉及了三角函數、勾股定理、圓的面積、切線的性質等知識,綜合性較強,有一定的難度,以點P和Q運動為主線,畫出對應的圖形是關鍵,注意數形結合的思想.26、(1)證明見解析;(2);(3);【答案解析】
(1)連接OA、AD,如圖,利用圓周角定理得到∠B=∠ADC,則
評論
0/150
提交評論