江蘇省南通巿2023學年高三下學期一??荚嚁祵W試題(含答案解析)_第1頁
江蘇省南通巿2023學年高三下學期一??荚嚁祵W試題(含答案解析)_第2頁
江蘇省南通巿2023學年高三下學期一模考試數學試題(含答案解析)_第3頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中,滿足的的系數之和為()A. B. C. D.2.函數(其中是自然對數的底數)的大致圖像為()A. B. C. D.3.在正方體中,點,,分別為棱,,的中點,給出下列命題:①;②;③平面;④和成角為.正確命題的個數是()A.0 B.1 C.2 D.34.設集合,,則()A. B.C. D.5.設是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標原點),且,則雙曲線的離心率為()A. B. C. D.6.函數的部分圖像大致為()A. B.C. D.7.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.8.已知整數滿足,記點的坐標為,則點滿足的概率為()A. B. C. D.9.已知,,若,則實數的值是()A.-1 B.7 C.1 D.1或710.已知等比數列滿足,,則()A. B. C. D.11.過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準線與軸交于,的面積為,則()A. B. C. D.12.已知橢圓的左、右焦點分別為、,過的直線交橢圓于A,B兩點,交y軸于點M,若、M是線段AB的三等分點,則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知單位向量的夾角為,則=_________.14.三個小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),則三人都收到禮物的概率為______.15.已知函數,(其中e為自然對數的底數),若關于x的方程恰有5個相異的實根,則實數a的取值范圍為________.16.在平行四邊形中,已知,,,若,,則____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數的圖象在處的切線方程是.(1)求的值;(2)若函數,討論的單調性與極值;(3)證明:.18.(12分)已知正實數滿足.(1)求的最小值.(2)證明:19.(12分)已知函數,其中,為自然對數的底數.(1)當時,求函數的極值;(2)設函數的導函數為,求證:函數有且僅有一個零點.20.(12分)如圖,四邊形中,,,,沿對角線將翻折成,使得.(1)證明:;(2)求直線與平面所成角的正弦值.21.(12分)已知橢圓的右頂點為,為上頂點,點為橢圓上一動點.(1)若,求直線與軸的交點坐標;(2)設為橢圓的右焦點,過點與軸垂直的直線為,的中點為,過點作直線的垂線,垂足為,求證:直線與直線的交點在橢圓上.22.(10分)如圖1,與是處在同-個平面內的兩個全等的直角三角形,,,連接是邊上一點,過作,交于點,沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【答案解析】

,有,,三種情形,用中的系數乘以中的系數,然后相加可得.【題目詳解】當時,的展開式中的系數為.當,時,系數為;當,時,系數為;當,時,系數為;故滿足的的系數之和為.故選:B.【答案點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關鍵.2.D【答案解析】由題意得,函數點定義域為且,所以定義域關于原點對稱,且,所以函數為奇函數,圖象關于原點對稱,故選D.3.C【答案解析】

建立空間直角坐標系,利用向量的方法對四個命題逐一分析,由此得出正確命題的個數.【題目詳解】設正方體邊長為,建立空間直角坐標系如下圖所示,,.①,,所以,故①正確.②,,不存在實數使,故不成立,故②錯誤.③,,,故平面不成立,故③錯誤.④,,設和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個.故選:C【答案點睛】本小題主要考查空間線線、線面位置關系的向量判斷方法,考查運算求解能力,屬于中檔題.4.A【答案解析】

解出集合,利用交集的定義可求得集合.【題目詳解】因為,又,所以.故選:A.【答案點睛】本題考查交集的計算,同時也考查了一元二次不等式的求解,考查計算能力,屬于基礎題.5.D【答案解析】

利用向量運算可得,即,由為的中位線,得到,所以,再根據雙曲線定義即可求得離心率.【題目詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【答案點睛】本題綜合考查向量運算與雙曲線的相關性質,難度一般.6.A【答案解析】

根據函數解析式,可知的定義域為,通過定義法判斷函數的奇偶性,得出,則為偶函數,可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【題目詳解】解:因為,所以的定義域為,則,∴為偶函數,圖象關于軸對稱,排除選項,且當時,,排除選項,所以正確.故選:A.【答案點睛】本題考查由函數解析式識別函數圖象,利用函數的奇偶性和特殊值法進行排除.7.B【答案解析】

由題意,框圖的作用是求分段函數的值域,求解即得解.【題目詳解】由題意可知,框圖的作用是求分段函數的值域,當;當綜上:.故選:B【答案點睛】本題考查了條件分支的程序框圖,考查了學生邏輯推理,分類討論,數學運算的能力,屬于基礎題.8.D【答案解析】

列出所有圓內的整數點共有37個,滿足條件的有7個,相除得到概率.【題目詳解】因為是整數,所以所有滿足條件的點是位于圓(含邊界)內的整數點,滿足條件的整數點有共37個,滿足的整數點有7個,則所求概率為.故選:.【答案點睛】本題考查了古典概率的計算,意在考查學生的應用能力.9.C【答案解析】

根據平面向量數量積的坐標運算,化簡即可求得的值.【題目詳解】由平面向量數量積的坐標運算,代入化簡可得.∴解得.故選:C.【答案點睛】本題考查了平面向量數量積的坐標運算,屬于基礎題.10.B【答案解析】由a1+a3+a5=21得a3+a5+a7=,選B.11.B【答案解析】

設點、,并設直線的方程為,由得,將直線的方程代入韋達定理,求得,結合的面積求得的值,結合焦點弦長公式可求得.【題目詳解】設點、,并設直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達定理得,,,,,,,,可得,,拋物線的準線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【答案點睛】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關鍵,考查計算能力,屬于中等題.12.D【答案解析】

根據題意,求得的坐標,根據點在橢圓上,點的坐標滿足橢圓方程,即可求得結果.【題目詳解】由已知可知,點為中點,為中點,故可得,故可得;代入橢圓方程可得,解得,不妨取,故可得點的坐標為,則,易知點坐標,將點坐標代入橢圓方程得,所以離心率為,故選:D.【答案點睛】本題考查橢圓離心率的求解,難點在于根據題意求得點的坐標,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

因為單位向量的夾角為,所以,所以==.14.【答案解析】

基本事件總數,三人都收到禮物包含的基本事件個數.由此能求出三人都收到禮物的概率.【題目詳解】三個小朋友之間準備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),基本事件總數,三人都收到禮物包含的基本事件個數.則三人都收到禮物的概率.故答案為:.【答案點睛】本題考查古典概型概率的求法,考查運算求解能力,屬于基礎題.15.【答案解析】

作出圖象,求出方程的根,分類討論的正負,數形結合即可.【題目詳解】當時,令,解得,所以當時,,則單調遞增,當時,,則單調遞減,當時,單調遞減,且,作出函數的圖象如圖:(1)當時,方程整理得,只有2個根,不滿足條件;(2)若,則當時,方程整理得,則,,此時各有1解,故當時,方程整理得,有1解同時有2解,即需,,因為(2),故此時滿足題意;或有2解同時有1解,則需,由(1)可知不成立;或有3解同時有0解,根據圖象不存在此種情況,或有0解同時有3解,則,解得,故,(3)若,顯然當時,和均無解,當時,和無解,不符合題意.綜上:的范圍是,故答案為:,【答案點睛】本題主要考查了函數零點與函數圖象的關系,考查利用導數研究函數的單調性,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.16.【答案解析】

設,則,得到,,利用向量的數量積的運算,即可求解.【題目詳解】由題意,如圖所示,設,則,又由,,所以為的中點,為的三等分點,則,,所以.【答案點睛】本題主要考查了向量的共線定理以及向量的數量積的運算,其中解答中熟記向量的線性運算法則,以及向量的共線定理和向量的數量積的運算公式,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)單調遞減區(qū)間為,單調遞增區(qū)間為,的極小值為,無極大值;(3)見解析.【答案解析】

(1)切點既在切線上又在曲線上得一方程,再根據斜率等于該點的導數再列一方程,解方程組即可;(2)先對求導數,根據導數判斷和求解即可.(3)把證明轉化為證明,然后證明極小值大于極大值即可.【題目詳解】解:(1)函數的定義域為由已知得,則,解得.(2)由題意得,則.當時,,所以單調遞減,當時,,所以單調遞增,所以,單調遞減區(qū)間為,單調遞增區(qū)間為,的極小值為,無極大值.(3)要證成立,只需證成立.令,則,當時,單調遞增,當時,單調遞減,所以的極大值為,即由(2)知,時,,且的最小值點與的最大值點不同,所以,即.所以,.【答案點睛】知識方面,考查建立方程組求未知數,利用導數求函數的單調區(qū)間和極值以及不等式的證明;能力方面,考查推理論證能力、分析問題和解決問題的能力以及運算求解能力;試題難度大.18.(1);(2)見解析【答案解析】

(1)利用乘“1”法,結合基本不等式求得結果.(2)直接利用基本不等式及乘“1”法,證明即可.【題目詳解】(1)因為,所以因為,所以(當且僅當,即時等號成立),所以(2)證明:因為,所以故(當且僅當時,等號成立)【答案點睛】本題考查了基本不等式的應用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.19.見解析【答案解析】

(1)當時,函數,其定義域為,則,設,,易知函數在上單調遞增,且,所以當時,,即;當時,,即,所以函數在上單調遞減,在上單調遞增,所以函數在處取得極小值,為,無極大值.(2)由題可得函數的定義域為,,設,,顯然函數在上單調遞增,當時,,,所以函數在內有一個零點,所以函數有且僅有一個零點;當時,,,所以函數有且僅有一個零點,所以函數有且僅有一個零點;當時,,,因為,所以,,又,所以函數在內有一個零點,所以函數有且僅有一個零點.綜上,函數有且僅有一個零點.20.(1)見證明;(2)【答案解析】

(1)取的中點,連.可證得,,于是可得平面,進而可得結論成立.(2)運用幾何法或向量法求解可得所求角的正弦值.【題目詳解】(1)證明:取的中點,連.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中點,連結,∵,∴,又,∴.又由題意得為等邊三角形,∴,∵,∴平面.作,則有平面,∴就是直線與平面所成的角.設,則,在等邊中,.又在中,,故.在中,由余弦定理得,∴,∴直線與平面所成角的正弦值為.解法2:由題意可得,建立如圖所示的空間直角坐標系.不妨設,則在直角三角形中,可得,作于,則有平面幾何知識可得,∴.又可得,.∴,.設平面的一個法向量為,由,得,令,則得.又,設直線與平面所成的角為,則.所以直線與平面所成角的正弦值為.【答案點睛】利用向量法求解直線和平面所成角時,關鍵點是恰當建立空間直角坐標系,確定斜線的方向向量和平面的法向量.解題時通過平面的法向量和直線的方向向量來求,即求出斜線的方向向量與平面的法向量所夾的銳角或鈍角的補角,取其余角就是斜線與平面所成的角.求解時注意向量的夾角與線面角間的關系.21.(1)(2)見解析【答案解析】

(1)直接求出直線方程,與橢圓方程聯(lián)立求出點坐標,從而可得直線方程,得其與軸交點坐標;(2)設,則,求出直線和的方程,從而求得兩直線的交點坐標,證明此交點在橢圓上,即此點坐標適合橢圓方程.代入驗證即可.注意分和說明.【題目詳解】解:本題考查直線與橢圓的位置關系的綜合,(1)由題知,,則.因為,所以,則直線的方程為,聯(lián)立,可得故.則,直線的方程為.令,得,故直線與軸的交點坐標為.(2)證明:因為,,所以.設點,則.設當時,設,則,此時直線與軸垂直,其直線方程為,直線的方程為,即.在方程中,令,得,得交點為,顯然在橢圓上.同理當時,交點也在橢圓上.當時,可設直線的方程為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論