江蘇省無錫市錫山區(qū)錫東片2022-2023學年九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
江蘇省無錫市錫山區(qū)錫東片2022-2023學年九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
江蘇省無錫市錫山區(qū)錫東片2022-2023學年九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
江蘇省無錫市錫山區(qū)錫東片2022-2023學年九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
江蘇省無錫市錫山區(qū)錫東片2022-2023學年九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列圖形中,中心對稱圖形有()A.4個 B.3個 C.2個 D.1個2.已知點是線段的黃金分割點,且,,則長是()A. B. C. D.3.下列方程是一元二次方程的是()A.3x2+=0 B.(3x-1)(3x+1)=3C.(x-3)(x-2)=x2 D.2x-3y+1=04.已知二次函數(shù)的圖象如圖所示,現(xiàn)給出下列結(jié)論:①;②;③;④.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.45.在Rt△ABC中,∠C=90°,AC=5,BC=12,則cosB的值為()A. B. C. D.6.已知,下列變形錯誤的是()A. B. C. D.7.已知二次函數(shù),當時隨的增大而減小,且關(guān)于的分式方程的解是自然數(shù),則符合條件的整數(shù)的和是()A.3 B.4 C.6 D.88.已知點(x1,y1),(x2,y2)是反比例函數(shù)y=圖象上的兩點,且0<x1<x2,則y1,y2的大小關(guān)系是()A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D.y2<y1<09.m是方程的一個根,且,則的值為()A. B.1 C. D.10.若式子在實數(shù)范圍內(nèi)有意義,則的取值范圍是()A. B. C. D.二、填空題(每小題3分,共24分)11.若扇形的半徑長為3,圓心角為60°,則該扇形的弧長為___.12.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=,將Rt△ABC繞A點逆時針旋轉(zhuǎn)30°后得到Rt△ADE,點B經(jīng)過的路徑為,則圖中陰影部分的面積是_____.13.如果,那么__________.14.如圖,△ABC的兩條中線AD,BE交于點G,EF∥BC交AD于點F.若FG=1,則AD=_____.15.若=2,則=_____.16.若,則=____________.17.已知方程的兩實數(shù)根的平方和為,則k的值為____.18.如圖,⊙O與直線相離,圓心到直線的距離,,將直線繞點逆時針旋轉(zhuǎn)后得到的直線剛好與⊙O相切于點,則⊙O的半徑=.三、解答題(共66分)19.(10分)在如圖所示的平面直角坐標系中,已知點A(﹣3,﹣3),點B(﹣1,﹣3),點C(﹣1,﹣1).(1)畫出△ABC;(2)畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出A1點的坐標:;(3)以O(shè)為位似中心,在第一象限內(nèi)把△ABC擴大到原來的兩倍,得到△A2B2C2,并寫出A2點的坐標:.20.(6分)如圖,是的直徑,為上一點,于點,交于點,與交于點為延長線上一點,且.(1)求證:是的切線;(2)求證:;(3)若,求的長.21.(6分)甲、乙、丙、丁四個人做“擊鼓傳花”游戲,游戲規(guī)則是:第一次由甲將花隨機傳給乙、丙、丁三人中的某一人,以后的每一次傳花都是由接到花的人隨機傳給其他三人中的某一人.(1)求第一次甲將花傳給丁的概率;(2)求經(jīng)過兩次傳花,花恰好回到甲手中的概率.22.(8分)籃球課上,朱老師向?qū)W生詳細地講解傳球的要領(lǐng)時,叫甲、乙、丙、丁四位同學配合朱老師進行傳球訓練,朱老師把球傳給甲同學后,讓四位同學相互傳球,其他人觀看體會,當甲同學第一個傳球時,求甲同學傳給下一個同學后,這個同學再傳給甲同學的概率23.(8分)已知,二次函數(shù)的圖象,如圖所示,解決下列問題:(1)關(guān)于的一元二次方程的解為;(2)求出拋物線的解析式;(3)為何值時.24.(8分)小明家飲水機中原有水的溫度為20℃,通電開機后,飲水機自動開始加熱(此過程中水溫y(℃)與開機時間x(分)滿足一次函數(shù)關(guān)系),當加熱到100℃時自動停止加熱,隨后水溫開始下降,此過程中水溫y(℃)與開機時間x(分)成反比例關(guān)系,當水溫降至20C時,飲水機又自動開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:(1)當0≤x≤8時,求水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式;(2)求圖中t的值;(3)若小明上午八點將飲水機在通電開機(此時飲水機中原有水的溫度為20℃后即外出散步,預(yù)計上午八點半散步回到家中,回到家時,他能喝到飲水機內(nèi)不低于30℃的水嗎?請說明你的理由.25.(10分)如圖,反比例函數(shù)y=的圖象與直線y=x+m在第一象限交于點P(6,2),A、B為直線上的兩點,點A的橫坐標為2,點B的橫坐標為1.D、C為反比例函數(shù)圖象上的兩點,且AD、BC平行于y軸.(1)求反比例函數(shù)y=與直線y=x+m的函數(shù)關(guān)系式(2)求梯形ABCD的面積.26.(10分)如圖,點在軸正半軸上,點是反比例函數(shù)圖象上的一點,且.過點作軸交反比例函數(shù)圖象于點.(1)求反比例函數(shù)的表達式;(2)求點的坐標.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)中心對稱圖形的定義:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形進行解答.【詳解】第一、二、三個圖形是中心對稱圖形,第四個圖形是軸對稱圖形,不是中心對稱圖形.綜上所述,是中心對稱圖形的有3個.故答案選B.【點睛】本題考查了中心對稱圖形,解題的關(guān)鍵是熟練的掌握中心對稱圖形的定義.2、C【分析】利用黃金分割比的定義即可求解.【詳解】由黃金分割比的定義可知∴故選C【點睛】本題主要考查黃金分割比,掌握黃金分割比是解題的關(guān)鍵.3、B【分析】根據(jù)一元二次方程的定義,二次項系數(shù)不能等于0,未知數(shù)最高次數(shù)是2的整式方程,即可得到答案.【詳解】解:A、不是整式方程,故本項錯誤;B、化簡得到,是一元二次方程,故本項正確;C、化簡得到,是一元一次方程,故本項錯誤;D、是二元一次方程,故本項錯誤;故選擇:B.【點睛】本題考查了一元二次方程的定義,熟記定義是解題的關(guān)鍵.4、C【分析】根據(jù)圖象可直接判斷a、c的符號,再結(jié)合對稱軸的位置可判斷b的符號,進而可判斷①;拋物線的圖象過點(3,0),代入拋物線的解析式可判斷②;根據(jù)拋物線頂點的位置可知:頂點的縱坐標小于-2,整理后可判斷③;根據(jù)圖象可知頂點的橫坐標大于1,整理后再結(jié)合③的結(jié)論即可判斷④.【詳解】解:①由圖象可知:,,由于對稱軸,∴,∴,故①正確;②∵拋物線過,∴時,,故②正確;③頂點坐標為:.由圖象可知:,∵,∴,即,故③錯誤;④由圖象可知:,,∴,∵,∴,∴,故④正確;故選:C.【點睛】本題考查了拋物線的圖象與性質(zhì)和拋物線的圖象與其系數(shù)的關(guān)系,熟練掌握拋物線的圖象與性質(zhì)、靈活運用數(shù)形結(jié)合的思想方法是解題的關(guān)鍵.5、B【分析】根據(jù)勾股定理求出AB,根據(jù)余弦的定義計算即可.【詳解】由勾股定理得,,則,故選:B.【點睛】本題考查的是銳角三角函數(shù)的定義,掌握銳角A的鄰邊b與斜邊c的比叫做∠A的余弦是解題的關(guān)鍵.6、B【解析】根據(jù)比例式的性質(zhì),即可得到答案.【詳解】∵?,?,?,?,∴變形錯誤的是選項B.故選B.【點睛】本題主要考查比例式的性質(zhì),掌握比例式的內(nèi)項之積等于外項之積,是解題的關(guān)鍵.7、A【分析】由二次函數(shù)的增減性可求得對稱軸,可求得a取值范圍,再求分式方程的解,進行求解即可.【詳解】解:

∵y=-x2+(a-2)x+3,

∴拋物線對稱軸為x=,開口向下,

∵當x>2時y隨著x的增大而減小,

∴≤2,解得a≤6,

解關(guān)于x的分式方程可得x=,且x≠3,則a≠5,

∵分式方程的解是自然數(shù),

∴a+1是2的倍數(shù)的自然數(shù),且a≠5,

∴符合條件的整數(shù)a為:-1、1、3,

∴符合條件的整數(shù)a的和為:-1+1+3=3,

故選:A.【點睛】此題考查二次函數(shù)的性質(zhì),由二次函數(shù)的性質(zhì)求得a的取值范圍是解題的關(guān)鍵.8、B【分析】根據(jù)反比例函數(shù)的系數(shù)為5>0,在每一個象限內(nèi),y隨x的增大而減小的性質(zhì)進行判斷即可.【詳解】∵5>0,∴圖形位于一、三象限,在每一個象限內(nèi),y隨x的增大而減小,又∵0<x1<x2,∴0<y2<y1,故選:B.【點睛】本題主要考查反比例函數(shù)圖象上點的坐標特征.注意:反比例函數(shù)的增減性只指在同一象限內(nèi).9、A【解析】將m代入關(guān)于x的一元二次方程x2+nx+m=0,通過解該方程即可求得m+n的值.【詳解】解:∵m是關(guān)于x的一元二次方程x2+nx+m=0的根,

∴m2+nm+m=0,

∴m(m+n+1)=0;

又∵m≠0,

∴m+n+1=0,

解得m+n=-1;

故選:A.【點睛】本題考查了一元二次方程的解的定義.一元二次方程ax2+bx+c=0(a≠0)的解一定滿足該一元二次方程的關(guān)系式.10、C【解析】直接利用二次根式的定義即可得出答案.【詳解】∵式子在實數(shù)范圍內(nèi)有意義,∴x的取值范圍是:x>1.故選:C.【點睛】本題考查了二次根式有意義的條件,正確把握定義是解答本題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)弧長的公式列式計算即可.【詳解】∵一個扇形的半徑長為3,且圓心角為60°,

∴此扇形的弧長為=π.

故答案為:π.【點睛】此題考查弧長公式,熟記公式是解題關(guān)鍵.12、【解析】先根據(jù)勾股定理得到AB=,再根據(jù)扇形的面積公式計算出S扇形ABD,由旋轉(zhuǎn)的性質(zhì)得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【詳解】解:如圖,∵∠ACB=90°,AC=BC=,∴AB==,∴S扇形ABD==,又∴Rt△ABC繞A點逆時針旋轉(zhuǎn)30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故答案是:.【點睛】本題考查了扇形的面積公式:S=,也考查了勾股定理以及旋轉(zhuǎn)的性質(zhì).13、【解析】∵,根據(jù)和比性質(zhì),得==,故答案為.14、1【分析】利用平行線分線段長比例定理得到=1,即AF=FD,所以EF為△ADC的中位線,則EF=CD=BD,再利用EF∥BD得到,所以DG=2FG=2,然后計算FD,從而得到AD的長.【詳解】解:∵△ABC的兩條中線AD,BE交于點G,∴BD=CD,AE=CE,∵EF∥CD,∴=1,即AF=FD,∴EF為△ADC的中位線,∴EF=CD,∴EF=BD,∵EF∥BD,∴,∴DG=2FG=2,∴FD=2+1=3,∴AD=2FD=1.故答案為:1.【點睛】本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.也考查了三角形中位線性質(zhì)和平行線分線段成比例定理.15、1【分析】根據(jù)=1,得出x=1y,再代入要求的式子進行計算即可.【詳解】∵=1,∴x=1y,∴;故答案為:1.【點睛】本題主要考查了比例的基本性質(zhì).解答此題的關(guān)鍵是根據(jù)比例的基本性質(zhì)求得x=1y.16、【分析】根據(jù)合比定理即可得答案.【詳解】∵,∴,∴=,故答案為:【點睛】本題考查合比定理,如果,那么;熟練掌握合比定理是解題關(guān)鍵.17、3【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系,得出和的值,然后將平方和變形為和的形式,代入便可求得k的值.【詳解】∵,設(shè)方程的兩個解為則,∵兩實根的平方和為,即=∴解得:k=3或k=-11∵當k=-11時,一元二次方程的△<0,不符,需要舍去故答案為:3【點睛】本題考查根與系數(shù)的關(guān)系,注意在最后求解出2個值后,有一個值不符需要舍去.18、1.【解析】試題分析:∵OB⊥AB,OB=,OA=4,∴在直角△ABO中,sin∠OAB=,則∠OAB=60°;又∵∠CAB=30°,∴∠OAC=∠OAB-∠CAB=30°,∵直線剛好與⊙O相切于點C,∴∠ACO=90°,∴在直角△AOC中,OC=OA=1.故答案是1.考點:①解直角三角形;②切線的性質(zhì);③含30°角直角三角形的性質(zhì).三、解答題(共66分)19、(1)詳見解析;(2)詳見解析,A1(﹣3,3);(3)詳見解析,A2(6,6).【解析】(1)根據(jù)A、B、C三點坐標畫出圖形即可;(2)作出A、B、C關(guān)于軸的對稱點A1、B1、C1即可;(3)延長OC到C2,使得OC2=2OC,同法作出A2,B2即可;【詳解】(1)△ABC如圖所示;(2)△A1B1C1如圖所示;A1(﹣3,3),(3)△A2B2C2如圖所示;A2(6,6).故答案為(﹣3,3),(6,6).【點睛】本題考查作圖﹣位似變換,軸對稱變換等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.20、(1)證明見解析;(2)證明見解析;(3)【分析】(1)欲證明BD是⊙O的切線,只要證明BD⊥AB;

(2)連接AC,證明△FCM∽△FAC即可解決問題;

(3)連接BF,想辦法求出BF,F(xiàn)M即可解決問題.【詳解】(1)∵,

∴∠AFC=∠ABC,

又∵∠AFC=∠ODB,

∴∠ABC=∠ODB,

∵OE⊥BC,

∴∠BED=90°,

∴∠ODB+∠EBD=90°,

∴∠ABC+∠EBD=90°,

∴OB⊥BD,

∴BD是⊙O的切線;

(2)連接AC,

∵OF⊥BC,

∴,,

∴∠BCF=∠FAC,

又∵∠CFM=∠AFC,

∴△FCM∽△FAC,

∴;

(3)連接BF,

∵AB是⊙O的直徑,且AB=10,

∴∠AFB=90°,∴,

∴,

∴,

∵,

∴,

∵,

∴,

∴,∴.【點睛】本題屬于圓綜合題,考查了圓周角定理,切線的判定,相似三角形的判定和性質(zhì),勾股定理,解直角三角形等知識,解題的關(guān)鍵是學會添加常用輔助線.21、(1);(2)【分析】(1)直接利用概率公式計算得出答案;(2)直接利用樹狀圖法得出所有符合題意情況,進而求出概率.【詳解】(1)P(第一次甲將花傳給?。?;(2)如圖所示:,共有9種等可能的結(jié)果,其中符合要求的結(jié)果有3種,故P(經(jīng)過兩次傳花,花恰好回到甲手里)==.【點睛】此題主要考查了樹狀圖法求概率,正確畫出樹狀圖是解題關(guān)鍵.22、.【分析】畫出樹狀圖,然后找到甲同學傳給下一個同學后,這個同學再傳給甲同學的結(jié)果數(shù)多即可得.【詳解】由題意可畫如下的樹狀圖:由樹狀圖可知,共有9種等可能性的結(jié)果,其中甲同學傳給下一個同學后,這個同學再傳給甲同學的結(jié)果有3種甲同學傳給下一個同學后,這個同學再傳給甲同學的概率.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1)-1或2;(2)拋物線解析式為y=-x2+2x+2;(2)x>2或x<-1.【分析】(1)直接觀察圖象,拋物線與x軸交于-1,2兩點,所以方程的解為x1=-1,x2=2.

(2)設(shè)出拋物線的頂點坐標形式,代入坐標(2,0),即可求得拋物線的解析式.

(2)若y<0,則函數(shù)的圖象在x軸的下方,找到對應(yīng)的自變量取值范圍即可.【詳解】解:(1)觀察圖象可看對稱軸出拋物線與x軸交于x=-1和x=2兩點,

∴方程的解為x1=-1,x2=2,

故答案為:-1或2;

(2)設(shè)拋物線解析式為y=-(x-1)2+k,

∵拋物線與x軸交于點(2,0),

∴(2-1)2+k=0,

解得:k=4,

∴拋物線解析式為y=-(x-1)2+4,

即:拋物線解析式為y=-x2+2x+2;

(2)拋物線與x軸的交點(-1,0),(2,0),當y<0時,則函數(shù)的圖象在x軸的下方,由函數(shù)的圖象可知:x>2或x<-1;【點睛】本題主要考查了二次函數(shù)與一元二次方程、不等式的關(guān)系,以及求函數(shù)解析式的方法,能從圖像中得到關(guān)鍵信息是解決此題的關(guān)鍵.24、(1)y=10x+1;(2)t的值為2;(3)不能,理由見解析【分析】(1)根據(jù)一次函數(shù)圖象上兩點的坐標,利用待定系數(shù)法即可求出當0≤x≤8時,水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式;(2)由點(8,100),利用待定系數(shù)法即可求出當8≤x≤t時,水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式,再將y=1代入該函數(shù)關(guān)系式中求出x值即可;(3)將x=30代入反比例函數(shù)關(guān)系式中求出y值,再與30比較后即可得出結(jié)論.【詳解】(1)當0≤x≤8時,設(shè)水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式為y=kx+b(k≠0).將(0,1)、(8,100)代入y=kx+b中,得:,解得:,∴當0≤x≤8時,水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式為y=10x+1.(2)當8≤x≤t時,設(shè)水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式為y(m≠0),將(8,100)代入y中,得:100,解得:m=800,∴當8≤x≤t時,水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式為y.當y1時,x=2,∴圖中t的值為2.(3)當x=30時,.答:小明上午八點半散步回到家中時,不能喝到飲水機內(nèi)不低于30°C的水.【點睛】本題考查了一次函數(shù)的應(yīng)用、待定系數(shù)法求一次(反比例)函數(shù)解析式以及一次(反比例)函數(shù)圖象上點的坐標特征,解答本題的關(guān)鍵是:(1)根據(jù)點的坐標,利用待定系數(shù)法求出一次函數(shù)關(guān)系式;(2)根據(jù)點的坐標,利用待定系數(shù)法求出反比例函數(shù)關(guān)系式;(3)將x=30代入反比例函數(shù)關(guān)系式中,求出y值.25、(1)y=,y=x-4(2)s=6.5【解析】考點:反比例函數(shù)綜合題.分析:(1)由于反比例

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論