2023學年江蘇省揚州教育院附屬中學中考數(shù)學最后沖刺濃縮精華卷含答案解析_第1頁
2023學年江蘇省揚州教育院附屬中學中考數(shù)學最后沖刺濃縮精華卷含答案解析_第2頁
2023學年江蘇省揚州教育院附屬中學中考數(shù)學最后沖刺濃縮精華卷含答案解析_第3頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023學年江蘇省揚州教育院附屬中學中考數(shù)學最后沖刺濃縮精華卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在測試卷卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在測試卷卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.將弧長為2πcm、圓心角為120°的扇形圍成一個圓錐的側(cè)面,則這個圓錐的高是()A.cm B.2cm C.2cm D.cm2.﹣3的相反數(shù)是()A. B. C. D.3.在以下三個圖形中,根據(jù)尺規(guī)作圖的痕跡,能判斷射線AD平分∠BAC的是()A.圖2 B.圖1與圖2 C.圖1與圖3 D.圖2與圖34.的算術(shù)平方根為()A. B. C. D.5.隨機擲一枚均勻的硬幣兩次,至少有一次正面朝上的概率為()A. B. C. D.6.如圖已知⊙O的內(nèi)接五邊形ABCDE,連接BE、CE,若AB=BC=CE,∠EDC=130°,則∠ABE的度數(shù)為()A.25° B.30° C.35° D.40°7.下列等式從左到右的變形,屬于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x D.4my-2=2(2my-1)8.已知平面內(nèi)不同的兩點A(a+2,4)和B(3,2a+2)到x軸的距離相等,則a的值為(

)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣59.一個幾何體由大小相同的小正方體搭成,從上面看到的幾何體的形狀圖如圖所示,其中小正方形中的數(shù)字表示在這個位置小正方體的個數(shù).從左面看到的這個幾何體的形狀圖的是()A. B. C. D.10.在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為()A.(,0) B.(2,0) C.(,0) D.(3,0)二、填空題(本大題共6個小題,每小題3分,共18分)11.﹣|﹣1|=______.12.如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標系,點B的坐標為(2,0),若拋物線與扇形OAB的邊界總有兩個公共點,則實數(shù)k的取值范圍是.13.半徑是6cm的圓內(nèi)接正三角形的邊長是_____cm.14.將多項式因式分解的結(jié)果是.15.如圖,已知圓錐的母線SA的長為4,底面半徑OA的長為2,則圓錐的側(cè)面積等于.16.甲、乙兩人分別從A,B兩地相向而行,他們距B地的距離s(km)與時間t(h)的關(guān)系如圖所示,那么乙的速度是__km/h.三、解答題(共8題,共72分)17.(8分)如圖1,拋物線l1:y=﹣x2+bx+3交x軸于點A、B,(點A在點B的左側(cè)),交y軸于點C,其對稱軸為x=1,拋物線l2經(jīng)過點A,與x軸的另一個交點為E(5,0),交y軸于點D(0,﹣5).(1)求拋物線l2的函數(shù)表達式;(2)P為直線x=1上一動點,連接PA、PC,當PA=PC時,求點P的坐標;(3)M為拋物線l2上一動點,過點M作直線MN∥y軸(如圖2所示),交拋物線l1于點N,求點M自點A運動至點E的過程中,線段MN長度的最大值.18.(8分)如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點E,點P是CD延長線上的一點,AP=AC,且∠B=2∠P.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑;(3)在(2)的條件下,若點B等分半圓CD,求DE的長.19.(8分)如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.求證:DE是⊙O的切線.求DE的長.20.(8分)在以“關(guān)愛學生、安全第一”為主題的安全教育宣傳月活動中,某學校為了了解本校學生的上學方式,在全校范圍內(nèi)隨機抽查部分學生,了解到上學方式主要有:A:結(jié)伴步行、B:自行乘車、C:家人接送、D:其他方式,并將收集的數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題:(1)本次抽查的學生人數(shù)是多少人?(2)請補全條形統(tǒng)計圖;請補全扇形統(tǒng)計圖;(3)“自行乘車”對應扇形的圓心角的度數(shù)是度;(4)如果該校學生有2000人,請你估計該校“家人接送”上學的學生約有多少人?21.(8分)有甲、乙兩個不透明的布袋,甲袋中有兩個完全相同的小球,分別標有數(shù)字1和-1;乙袋中有三個完全相同的小球,分別標有數(shù)字-1、0和1.小麗先從甲袋中隨機取出一個小球,記錄下小球上的數(shù)字為x;再從乙袋中隨機取出一個小球,記錄下小球上的數(shù)字為y,設點P的坐標為(x,y).(1)請用表格或樹狀圖列出點P所有可能的坐標;(1)求點P在一次函數(shù)y=x+1圖象上的概率.22.(10分)如圖,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分線交AE于點O,以點O為圓心,OA為半徑的圓經(jīng)過點B,交BC于另一點F.(1)求證:CD與⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.23.(12分)如圖,點A.F、C.D在同一直線上,點B和點E分別在直線AD的兩側(cè),且AB=DE,∠A=∠D,AF=DC.(1)求證:四邊形BCEF是平行四邊形,(2)若∠ABC=90°,AB=4,BC=3,當AF為何值時,四邊形BCEF是菱形.24.東東玩具商店用500元購進一批悠悠球,很受中小學生歡迎,悠悠球很快售完,接著又用900元購進第二批這種悠悠球,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進價多了5元.求第一批悠悠球每套的進價是多少元;如果這兩批悠悠球每套售價相同,且全部售完后總利潤不低于25%,那么每套悠悠球的售價至少是多少元?

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(共10小題,每小題3分,共30分)1、B【答案解析】

由弧長公式可求解圓錐母線長,再由弧長可求解圓錐底面半徑長,再運用勾股定理即可求解圓錐的高.【題目詳解】解:設圓錐母線長為Rcm,則2π=,解得R=3cm;設圓錐底面半徑為rcm,則2π=2πr,解得r=1cm.由勾股定理可得圓錐的高為=2cm.故選擇B.【答案點睛】本題考查了圓錐的概念和弧長的計算.2、D【答案解析】

相反數(shù)的定義是:如果兩個數(shù)只有符號不同,我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),特別地,1的相反數(shù)還是1.【題目詳解】根據(jù)相反數(shù)的定義可得:-3的相反數(shù)是3.故選D.【答案點睛】本題考查相反數(shù),題目簡單,熟記定義是關(guān)鍵.3、C【答案解析】【分析】根據(jù)角平分線的作圖方法可判斷圖1,根據(jù)圖2的作圖痕跡可知D為BC中點,不是角平分線,圖3中根據(jù)作圖痕跡可通過判斷三角形全等推導得出AD是角平分線.【題目詳解】圖1中,根據(jù)作圖痕跡可知AD是角平分線;圖2中,根據(jù)作圖痕跡可知作的是BC的垂直平分線,則D為BC邊的中點,因此AD不是角平分線;圖3:由作圖方法可知AM=AE,AN=AF,∠BAC為公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共邊,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故選C.【答案點睛】本題考查了尺規(guī)作圖,三角形全等的判定與性質(zhì)等,熟知角平分的尺規(guī)作圖方法、全等三角形的判定與性質(zhì)是解題的關(guān)鍵.4、B【答案解析】分析:先求得的值,再繼續(xù)求所求數(shù)的算術(shù)平方根即可.詳解:∵=2,而2的算術(shù)平方根是,∴的算術(shù)平方根是,故選B.點睛:此題主要考查了算術(shù)平方根的定義,解題時應先明確是求哪個數(shù)的算術(shù)平方根,否則容易出現(xiàn)選A的錯誤.5、D【答案解析】

先求出兩次擲一枚硬幣落地后朝上的面的所有情況,再根據(jù)概率公式求解.【題目詳解】隨機擲一枚均勻的硬幣兩次,落地后情況如下:至少有一次正面朝上的概率是,故選:D.【答案點睛】本題考查了隨機事件的概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率.6、B【答案解析】

如圖,連接OA,OB,OC,OE.想辦法求出∠AOE即可解決問題.【題目詳解】如圖,連接OA,OB,OC,OE.∵∠EBC+∠EDC=180°,∠EDC=130°,∴∠EBC=50°,∴∠EOC=2∠EBC=100°,∵AB=BC=CE,∴弧AB=弧BC=弧CE,∴∠AOB=∠BOC=∠EOC=100°,∴∠AOE=360°﹣3×100°=60°,∴∠ABE=∠AOE=30°.故選:B.【答案點睛】本題考查圓周角定理,圓心角,弧,弦之間的關(guān)系等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.7、D【答案解析】

根據(jù)因式分解是把一個多項式轉(zhuǎn)化成幾個整式積的形式,可得答案.【題目詳解】解:A、是整式的乘法,故A不符合題意;

B、沒把一個多項式轉(zhuǎn)化成幾個整式積的形式,故B不符合題意;

C、沒把一個多項式轉(zhuǎn)化成幾個整式積的形式,故C不符合題意;

D、把一個多項式轉(zhuǎn)化成幾個整式積的形式,故D符合題意;

故選D.【答案點睛】本題考查了因式分解的意義,因式分解是把一個多項式轉(zhuǎn)化成幾個整式積的形式.8、A【答案解析】分析:根據(jù)點A(a+2,4)和B(3,2a+2)到x軸的距離相等,得到4=|2a+2|,即可解答.詳解:∵點A(a+2,4)和B(3,2a+2)到x軸的距離相等,∴4=|2a+2|,a+2≠3,解得:a=?3,故選A.點睛:考查點的坐標的相關(guān)知識;用到的知識點為:到x軸和y軸的距離相等的點的橫縱坐標相等或互為相反數(shù).9、B【答案解析】分析:由已知條件可知,從正面看有1列,每列小正方數(shù)形數(shù)目分別為4,1,2;從左面看有1列,每列小正方形數(shù)目分別為1,4,1.據(jù)此可畫出圖形.詳解:由俯視圖及其小正方體的分布情況知,該幾何體的主視圖為:該幾何體的左視圖為:故選:B.點睛:此題主要考查了幾何體的三視圖畫法.由幾何體的俯視圖及小正方形內(nèi)的數(shù)字,可知主視圖的列數(shù)與俯視圖的列數(shù)相同,且每列小正方形數(shù)目為俯視圖中該列小正方形數(shù)字中的最大數(shù)字.左視圖的列數(shù)與俯視圖的行數(shù)相同,且每列小正方形數(shù)目為俯視圖中相應行中正方形數(shù)字中的最大數(shù)字.10、C【答案解析】

過點B作BD⊥x軸于點D,易證△ACO≌△BCD(AAS),從而可求出B的坐標,進而可求出反比例函數(shù)的解析式,根據(jù)解析式與A的坐標即可得知平移的單位長度,從而求出C的對應點.【題目詳解】解:過點B作BD⊥x軸于點D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴設反比例函數(shù)的解析式為y=,將B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,∴C也移動了個單位長度,此時點C的對應點C′的坐標為(,0)故選:C.【答案點睛】本題考查反比例函數(shù)的綜合問題,涉及全等三角形的性質(zhì)與判定,反比例函數(shù)的解析式,平移的性質(zhì)等知識,綜合程度較高,屬于中等題型.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【答案解析】

原式利用立方根定義,以及絕對值的代數(shù)意義計算即可求出值.【題目詳解】解:原式=3﹣1=2,故答案為:2【答案點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.12、-2<k<?!敬鸢附馕觥?/p>

由圖可知,∠AOB=45°,∴直線OA的解析式為y=x,聯(lián)立,消掉y得,,由解得,.∴當時,拋物線與OA有一個交點,此交點的橫坐標為1.∵點B的坐標為(2,0),∴OA=2,∴點A的坐標為().∴交點在線段AO上.當拋物線經(jīng)過點B(2,0)時,,解得k=-2.∴要使拋物線與扇形OAB的邊界總有兩個公共點,實數(shù)k的取值范圍是-2<k<.【題目詳解】請在此輸入詳解!13、6【答案解析】

根據(jù)題意畫出圖形,作出輔助線,利用垂徑定理及等邊三角形的性質(zhì)解答即可.【題目詳解】如圖所示,OB=OA=6,∵△ABC是正三角形,由于正三角形的中心就是圓的圓心,且正三角形三線合一,所以BO是∠ABC的平分線;∠OBD=60°×=30°,BD=cos30°×6=6×=3;根據(jù)垂徑定理,BC=2×BD=6,故答案為6.【答案點睛】本題主要考查了正多邊形和圓,正三角形的性質(zhì),熟練掌握等邊三角形的性質(zhì)是解題的關(guān)鍵,根據(jù)圓的內(nèi)接正三角形的特點,求出內(nèi)心到每個頂點的距離,可求出內(nèi)接正三角形的邊長.14、m(m+n)(m﹣n).【答案解析】測試卷分析:原式==m(m+n)(m﹣n).故答案為:m(m+n)(m﹣n).考點:提公因式法與公式法的綜合運用.15、8π【答案解析】

圓錐的側(cè)面積就等于母線長乘底面周長的一半.依此公式計算即可.【題目詳解】側(cè)面積=4×4π÷2=8π.故答案為8π.【答案點睛】本題主要考查了圓錐的計算,正確理解圓錐的側(cè)面積的計算可以轉(zhuǎn)化為扇形的面積的計算,理解圓錐與展開圖之間的關(guān)系.16、3.6【答案解析】分析:根據(jù)題意,甲的速度為6km/h,乙出發(fā)后2.5小時兩人相遇,可以用方程思想解決問題.詳解:由題意,甲速度為6km/h.當甲開始運動時相距36km,兩小時后,乙開始運動,經(jīng)過2.5小時兩人相遇.設乙的速度為xkm/h4.5×6+2.5x=36解得x=3.6故答案為3.6點睛:本題為一次函數(shù)實際應用問題,考查一次函數(shù)圖象在實際背景下所代表的意義.解答這類問題時,也可以通過構(gòu)造方程解決問題.三、解答題(共8題,共72分)17、(1)拋物線l2的函數(shù)表達式;y=x2﹣4x﹣1;(2)P點坐標為(1,1);(3)在點M自點A運動至點E的過程中,線段MN長度的最大值為12.1.【答案解析】

(1)由拋物線l1的對稱軸求出b的值,即可得出拋物線l1的解析式,從而得出點A、點B的坐標,由點B、點E、點D的坐標求出拋物線l2的解析式即可;(2)作CH⊥PG交直線PG于點H,設點P的坐標為(1,y),求出點C的坐標,進而得出CH=1,PH=|3﹣y|,PG=|y|,AG=2,由PA=PC可得PA2=PC2,由勾股定理分別將PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)設出點M的坐標,求出兩個拋物線交點的橫坐標分別為﹣1,4,①當﹣1<x≤4時,點M位于點N的下方,表示出MN的長度為關(guān)于x的二次函數(shù),在x的范圍內(nèi)求二次函數(shù)的最值;②當4<x≤1時,點M位于點N的上方,同理求出此時MN的最大值,取二者較大值,即可得出MN的最大值.【題目詳解】(1)∵拋物線l1:y=﹣x2+bx+3對稱軸為x=1,∴x=﹣=1,b=2,∴拋物線l1的函數(shù)表達式為:y=﹣x2+2x+3,當y=0時,﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),設拋物線l2的函數(shù)表達式;y=a(x﹣1)(x+1),把D(0,﹣1)代入得:﹣1a=﹣1,a=1,∴拋物線l2的函數(shù)表達式;y=x2﹣4x﹣1;(2)作CH⊥PG交直線PG于點H,設P點坐標為(1,y),由(1)可得C點坐標為(0,3),∴CH=1,PH=|3﹣y|,PG=|y|,AG=2,∴PC2=12+(3﹣y)2=y2﹣6y+10,PA2==y2+4,∵PC=PA,∴PA2=PC2,∴y2﹣6y+10=y2+4,解得y=1,∴P點坐標為(1,1);(3)由題意可設M(x,x2﹣4x﹣1),∵MN∥y軸,∴N(x,﹣x2+2x+3),令﹣x2+2x+3=x2﹣4x﹣1,可解得x=﹣1或x=4,①當﹣1<x≤4時,MN=(﹣x2+2x+3)﹣(x2﹣4x﹣1)=﹣2x2+6x+8=﹣2(x﹣)2+,顯然﹣1<≤4,∴當x=時,MN有最大值12.1;②當4<x≤1時,MN=(x2﹣4x﹣1)﹣(﹣x2+2x+3)=2x2﹣6x﹣8=2(x﹣)2﹣,顯然當x>時,MN隨x的增大而增大,∴當x=1時,MN有最大值,MN=2(1﹣)2﹣=12.綜上可知:在點M自點A運動至點E的過程中,線段MN長度的最大值為12.1.【答案點睛】本題是二次函數(shù)與幾何綜合題,主要考查二次函數(shù)解析式的求解、勾股定理的應用以及動點求線段最值問題.18、(1)證明見解析;(2);(3);【答案解析】

(1)連接OA、AD,如圖,利用圓周角定理得到∠B=∠ADC,則可證明∠ADC=2∠ACP,利用CD為直徑得到∠DAC=90°,從而得到∠ADC=60°,∠C=30°,則∠AOP=60°,于是可證明∠OAP=90°,然后根據(jù)切線的判斷定理得到結(jié)論;(2)利用∠P=30°得到OP=2OA,則,從而得到⊙O的直徑;(3)作EH⊥AD于H,如圖,由點B等分半圓CD得到∠BAC=45°,則∠DAE=45°,設DH=x,則DE=2x,所以然后求出x即可得到DE的長.【題目詳解】(1)證明:連接OA、AD,如圖,∵∠B=2∠P,∠B=∠ADC,∴∠ADC=2∠P,∵AP=AC,∴∠P=∠ACP,∴∠ADC=2∠ACP,∵CD為直徑,∴∠DAC=90°,∴∠ADC=60°,∠C=30°,∴△ADO為等邊三角形,∴∠AOP=60°,而∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥PA,∴PA是⊙O的切線;(2)解:在Rt△OAP中,∵∠P=30°,∴OP=2OA,∴∴⊙O的直徑為;(3)解:作EH⊥AD于H,如圖,∵點B等分半圓CD,∴∠BAC=45°,∴∠DAE=45°,設DH=x,在Rt△DHE中,DE=2x,在Rt△AHE中,∴即解得∴【答案點睛】本題考查了切線的判定與性質(zhì):經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.圓的切線垂直于經(jīng)過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常?!坝龅角悬c連圓心得半徑”.也考查了圓周角定理.19、(1)詳見解析;(2)4.【答案解析】測試卷分析:(1)連結(jié)OD,由AD平分∠BAC,OA=OD,可證得∠ODA=∠DAE,由平行線的性質(zhì)可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切線;(2)過點O作OF⊥AC于點F,由垂徑定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四邊形OFED是矩形,即可得DE=OF=4.測試卷解析:(1)連結(jié)OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切線;(2)過點O作OF⊥AC于點F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四邊形OFED是矩形,∴DE=OF=4.考點:切線的判定;垂徑定理;勾股定理;矩形的判定及性質(zhì).20、(1)本次抽查的學生人數(shù)是120人;(2)見解析;(3)126;(4)該?!凹胰私铀汀鄙蠈W的學生約有500人.【答案解析】

(1)本次抽查的學生人數(shù):18÷15%=120(人);(2)A:結(jié)伴步行人數(shù)120﹣42﹣30﹣18=30(人),據(jù)此補全條形統(tǒng)計圖;(3)“自行乘車”對應扇形的圓心角的度數(shù)360°×=126°;(4)估計該校“家人接送”上學的學生約有:2000×25%=500(人).【題目詳解】解:(1)本次抽查的學生人數(shù):18÷15%=120(人),答:本次抽查的學生人數(shù)是120人;(2)A:結(jié)伴步行人數(shù)120﹣42﹣30﹣18=30(人),補全條形統(tǒng)計圖如下:“結(jié)伴步行”所占的百分比為×100%=25%;“自行乘車”所占的百分比為×100%=35%,

“自行乘車”在扇形統(tǒng)計圖中占的度數(shù)為360°×35%=126°,補全扇形統(tǒng)計圖,如圖所示;(3)“自行乘車”對應扇形的圓心角的度數(shù)360°×=126°,故答案為126;(4)估計該?!凹胰私铀汀鄙蠈W的學生約有:2000×25%=500(人),答:該校“家人接送”上學的學生約有500人.【答案點睛】本題主要考查條形統(tǒng)計圖及扇形統(tǒng)計圖及相關(guān)計算,用樣本估計總體.解題的關(guān)鍵是讀懂統(tǒng)計圖,從條形統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.21、(1)見解析;(1)13【答案解析】測試卷分析:(1)畫出樹狀圖(或列表),根據(jù)樹狀圖(或表格)列出點P所有可能的坐標即可;(1)根據(jù)(1)的所有結(jié)果,計算出這些結(jié)果中點P在一次函數(shù)圖像上的個數(shù),即可求得點P在一次函數(shù)圖像上的概率.測試卷解析:(1)畫樹狀圖:或列表如下:∴點P所有可能的坐標為(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).∵只有(1,1)與(-1,-1)這兩個點在一次函數(shù)圖像上,∴P(點P在一次函數(shù)圖像上)=.考點:用(樹狀圖或列表法)求概率.22、(1)證明見解析;(2)【答案解析】測試卷分析:(1)過點O作OG⊥DC,垂足為G.先證明∠OAD=90°,從而得到∠OAD=∠OGD=90°,然后利用AAS可證明△ADO≌△GDO,則OA=OG=r,則DC是⊙O的切線;

(2)連接OF,依據(jù)垂徑定理可知BE=EF=1,在Rt△OEF中,依據(jù)勾股定理可知求得OF=13,然后可得到AE的長,最后在Rt△ABE中,利用銳角三角函數(shù)的定義求解即可.測試卷解析:(1)證明:過點O作OG⊥DC,垂足為G.

∵AD∥BC,AE⊥BC于E,

∴OA⊥AD.

∴∠OAD=∠OGD=90°.

在△ADO和△GDO中,

∴△ADO≌△GDO.

∴OA=OG.

∴DC是⊙O的切線.

(2)如圖所示:連接OF.

∵OA⊥BC,

∴BE=EF=BF=1.在Rt△OEF中,OE=5,EF=1,∴OF=,∴AE=OA+OE=13+5=2.

∴tan∠AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論