




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ThresholdDynamicsforCompartmentalEpidemicModelsinPeriodicEnvironments●Introduction●Thebasicreproductionratio●Threeexamples●ThresholddynamicsinapatchymodelThresholdDynamicsforCompart1●IntroductionThebasicreproductionratioistheexpectednumberofsecondarycasesproduced,inacompletelysusceptiblepopulation,byatypicalinfectiveindividual.Autonomousepidemicmodels[7,31]SpecificinfectiousdiseasesSexualdiseases[20]Tuberculosisinpossums[13]Denguefever[12]SARS[15,24,33,40]Peopletravelamongcities[1,2]Patchymodels[32,34-36]●IntroductionThebasicreprod2Periodicfluctuations(contactrates,birthrates,vaccinationprogram)Intuitively,onemayexpecttousethebasicreproductionnumberofthetime-averagedautonomoussystemofaperiodicepidemicmodeloveratimeperiod.Unfortunately,thisaveragebasicreproductionnumberisapplicableonlyincertaincircumstances,butoverestimatesorunderestimatesinfectionrisksinmanyothercases.Theeffectivereproductionnumberisalsousedintheliterature,whichisdefinedastheaveragenumberofsecondarycasesarisingfromasingletypicalinfectiveintroducedattimetintothepopulation[11].Itsmagnitudeisausefulindicatorofboththeriskofanepidemicandtheeffortrequiredtocontrolaninfection.However,thisnumberisnotathresholdparametertodeterminewhetherthediseasecaninvadethesusceptiblepopulationsuccessfully.Recently,Baca?randGuernaouipresentedageneraldefinitionofthebasicreproductionnumberinaperiodicenvironment[4].Thepurposeofourcurrentpaperistoestablishthebasicreproductionratioforalargeclassofperiodiccompartmentalepidemicmodelsandshowthatitisathresholdparameterforthelocalstabilityofthedisease-freeperiodicsolution,andevenfortheglobaldynamicsundercertaincircumstances.Periodicfluctuations(contact3●ThebasicreproductionratioWeconsideraheterogeneouspopulationwhoseindividualscanbegroupedintonhomogeneouscompartments.Letwitheachxi≥0,bethestateofindividualsineachcompartment.Weassumethatthecompartmentscanbedividedintotwotypes:infectedcompartments,labeledbyi=1,...,m,anduninfectedcompartments,labeledbyi=m+1,...,n.DefineXstobethesetofalldisease-freestates:Xs:={x≥0:xi=0,?i=1,...,m}.betheinputrateofnewlyinfectedindividualsintheithcompartment.
betheinputrateofindividualsbyothermeans(forexample,births,immigrations)
betherateoftransferofindividualsoutofcompartmenti(forexample,deaths,recoveryandemigrations)●Thebasicreproductionratio4Thediseasetransmissionmodelisgovernedbyanon-autonomousordinarydifferentialsystem:Thediseasetransmissionmodel5考慮周期線(xiàn)性系統(tǒng)。其中,連續(xù),是以T為周期的周期函數(shù)。記其基本解矩陣為。關(guān)于其零解的穩(wěn)定性討論起至關(guān)重要的作用。引理:存在非奇異可微周期矩陣p(t),以及一個(gè)常數(shù)矩陣Q,使得考慮周期線(xiàn)性系統(tǒng)。其中6基本再生數(shù)課件7基本再生數(shù)課件8有序Banach空間:設(shè)E為Banach空間,P為E中的閉凸錐,則可由P引出E中的序關(guān)系使E按構(gòu)成有序Banach空間。此時(shí)錐稱(chēng)為E的正元錐。有序Banach空間:使E按構(gòu)成有序Banach空9基本再生數(shù)課件10Ascoli-Arzelatheorem:是列緊的當(dāng)且僅當(dāng)F為一致有界的且是等度連續(xù)的。Ascoli-Arzelatheorem:是列緊的當(dāng)且僅當(dāng)11基本再生數(shù)課件12基本再生數(shù)課件13基本再生數(shù)課件14基本再生數(shù)課件15基本再生數(shù)課件16基本再生數(shù)課件17基本再生數(shù)課件18基本再生數(shù)課件19基本再生數(shù)課件20基本再生數(shù)課件21基本再生數(shù)課件22基本再生數(shù)課件23基本再生數(shù)課件24基本再生數(shù)課件25●Threeexamples●Threeexamples26基本再生數(shù)課件27基本再生數(shù)課件28基本再生數(shù)課件29基本再生數(shù)課件30基本再生數(shù)課件31基本再生數(shù)課件32基本再生數(shù)課件33●Thresholddynamicsinapatchymodel●Thresholddynamicsinapatc34基本再生數(shù)課件35基本再生數(shù)課件36基本再生數(shù)課件37基本再生數(shù)課件38基本再生數(shù)課件39基本再生數(shù)課件40基本再生數(shù)課件41基本再生數(shù)課件42ThresholdDynamicsforCompartmentalEpidemicModelsinPeriodicEnvironments●Introduction●Thebasicreproductionratio●Threeexamples●ThresholddynamicsinapatchymodelThresholdDynamicsforCompart43●IntroductionThebasicreproductionratioistheexpectednumberofsecondarycasesproduced,inacompletelysusceptiblepopulation,byatypicalinfectiveindividual.Autonomousepidemicmodels[7,31]SpecificinfectiousdiseasesSexualdiseases[20]Tuberculosisinpossums[13]Denguefever[12]SARS[15,24,33,40]Peopletravelamongcities[1,2]Patchymodels[32,34-36]●IntroductionThebasicreprod44Periodicfluctuations(contactrates,birthrates,vaccinationprogram)Intuitively,onemayexpecttousethebasicreproductionnumberofthetime-averagedautonomoussystemofaperiodicepidemicmodeloveratimeperiod.Unfortunately,thisaveragebasicreproductionnumberisapplicableonlyincertaincircumstances,butoverestimatesorunderestimatesinfectionrisksinmanyothercases.Theeffectivereproductionnumberisalsousedintheliterature,whichisdefinedastheaveragenumberofsecondarycasesarisingfromasingletypicalinfectiveintroducedattimetintothepopulation[11].Itsmagnitudeisausefulindicatorofboththeriskofanepidemicandtheeffortrequiredtocontrolaninfection.However,thisnumberisnotathresholdparametertodeterminewhetherthediseasecaninvadethesusceptiblepopulationsuccessfully.Recently,Baca?randGuernaouipresentedageneraldefinitionofthebasicreproductionnumberinaperiodicenvironment[4].Thepurposeofourcurrentpaperistoestablishthebasicreproductionratioforalargeclassofperiodiccompartmentalepidemicmodelsandshowthatitisathresholdparameterforthelocalstabilityofthedisease-freeperiodicsolution,andevenfortheglobaldynamicsundercertaincircumstances.Periodicfluctuations(contact45●ThebasicreproductionratioWeconsideraheterogeneouspopulationwhoseindividualscanbegroupedintonhomogeneouscompartments.Letwitheachxi≥0,bethestateofindividualsineachcompartment.Weassumethatthecompartmentscanbedividedintotwotypes:infectedcompartments,labeledbyi=1,...,m,anduninfectedcompartments,labeledbyi=m+1,...,n.DefineXstobethesetofalldisease-freestates:Xs:={x≥0:xi=0,?i=1,...,m}.betheinputrateofnewlyinfectedindividualsintheithcompartment.
betheinputrateofindividualsbyothermeans(forexample,births,immigrations)
betherateoftransferofindividualsoutofcompartmenti(forexample,deaths,recoveryandemigrations)●Thebasicreproductionratio46Thediseasetransmissionmodelisgovernedbyanon-autonomousordinarydifferentialsystem:Thediseasetransmissionmodel47考慮周期線(xiàn)性系統(tǒng)。其中,連續(xù),是以T為周期的周期函數(shù)。記其基本解矩陣為
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)境設(shè)計(jì)寫(xiě)生課件
- 2025企業(yè)并購(gòu)標(biāo)準(zhǔn)版合同
- 掌握寵物營(yíng)養(yǎng)研究熱點(diǎn)試題及答案
- 針灸-十四經(jīng)穴、經(jīng)外奇穴之穴位名稱(chēng)、定位及此法
- 武夷學(xué)院《臨床藥學(xué)英語(yǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 白銀希望職業(yè)技術(shù)學(xué)院《市場(chǎng)與品牌策略》2023-2024學(xué)年第二學(xué)期期末試卷
- 海南軟件職業(yè)技術(shù)學(xué)院《跨文化社會(huì)研究方法》2023-2024學(xué)年第二學(xué)期期末試卷
- 江蘇警官學(xué)院《小學(xué)語(yǔ)文課程標(biāo)準(zhǔn)與教材分析》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖北師范大學(xué)《書(shū)法篆刻二》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣東文藝職業(yè)學(xué)院《當(dāng)代西方行政改革問(wèn)題研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 陶藝課程課件
- 雙減背景下初中數(shù)學(xué)分層設(shè)計(jì)作業(yè)課題研究結(jié)題總結(jié)匯報(bào)
- 蘋(píng)果電腦macOS效率手冊(cè)
- ACOG“妊娠期神經(jīng)急癥臨床專(zhuān)家共識(shí)(2024年)”解讀
- 2024年全國(guó)職業(yè)院校技能大賽(節(jié)水系統(tǒng)安裝與維護(hù)賽項(xiàng))考試題庫(kù)(含答案)
- 《中國(guó)古代寓言》導(dǎo)讀(課件)2023-2024學(xué)年統(tǒng)編版語(yǔ)文三年級(jí)下冊(cè)
- 工會(huì)工作制度匯編
- 演出場(chǎng)所衛(wèi)生清潔方案
- 中醫(yī)病歷書(shū)寫(xiě)基本規(guī)范
- RFJ 006-2021 RFP型人防過(guò)濾吸收器制造與驗(yàn)收規(guī)范(暫行)
- 加油站安全巡檢檢查
評(píng)論
0/150
提交評(píng)論