數(shù)學(xué)個人的教案_第1頁
數(shù)學(xué)個人的教案_第2頁
數(shù)學(xué)個人的教案_第3頁
數(shù)學(xué)個人的教案_第4頁
數(shù)學(xué)個人的教案_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

Word-9-數(shù)學(xué)個人的教案數(shù)學(xué)個人優(yōu)秀教案3篇

數(shù)學(xué)老師應(yīng)當(dāng)在課堂中培育同學(xué)的奇怪???心,熱忱鼓舞他們進(jìn)取思索,引導(dǎo)大膽提出疑問。在數(shù)學(xué)教學(xué)工作中,你知道如何寫優(yōu)秀數(shù)學(xué)教案?不妨和我們共享一下。你是否在找正預(yù)備撰寫“數(shù)學(xué)個人優(yōu)秀教案”,下面收集了相關(guān)的素材,供大家寫文參考!

數(shù)學(xué)個人優(yōu)秀教案篇1

理解一元二次方程求根公式的推導(dǎo)過程,了解公式法的概念,會嫻熟應(yīng)用公式法解一元二次方程.

復(fù)習(xí)詳細(xì)數(shù)字的一元二次方程配方法的解題過程,引入ax2+bx+c=0(a≠0)的求根公式的推導(dǎo),并應(yīng)用公式法解一元二次方程.

重點

求根公式的推導(dǎo)和公式法的應(yīng)用.

難點

一元二次方程求根公式的推導(dǎo).

一、復(fù)習(xí)引入

1.前面我們學(xué)習(xí)過解一元二次方程的“直接開平方法”,比如,方程

(1)x2=4(2)(x-2)2=7

提問1這種解法的(理論)依據(jù)是什么?

提問2這種解法的局限性是什么?(只對那種“平方式等于非負(fù)數(shù)”的特別二次方程有效,不能實施于一般形式的二次方程.)

2.面對這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開平方”的形式.)

(同學(xué)活動)用配方法解方程2x2+3=7x

(老師點評)略

總結(jié)用配方法解一元二次方程的步驟(同學(xué)總結(jié),老師點評).

(1)先將已知方程化為一般形式;

(2)化二次項系數(shù)為1;

(3)常數(shù)項移到右邊;

(4)方程兩邊都加上一次項系數(shù)的一半的平方,使左邊配成一個完全平方式;

(5)變形為(x+p)2=q的形式,假如q≥0,方程的根是x=-p±q;假如q0,方程無實根.

二、探究新知

用配方法解方程:

(1)ax2-7x+3=0(2)ax2+bx+3=0

假如這個一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請同學(xué)獨自完成下面這個問題.

問題:已知ax2+bx+c=0(a≠0),試推導(dǎo)它的兩個根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個方程肯定有解嗎?什么狀況下有解?)

分析:由于前面詳細(xì)數(shù)字已做得許多,我們現(xiàn)在不妨把a(bǔ),b,c也當(dāng)成一個詳細(xì)數(shù)字,依據(jù)上面的解題步驟就可以始終推下去.

解:移項,得:ax2+bx=-c

二次項系數(shù)化為1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a20,當(dāng)b2-4ac≥0時,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接開平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a,b,c而定,因此:

(1)解一元二次方程時,可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac≥0時,將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

(2)這個式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

公式的理解

(4)由求根公式可知,一元二次方程最多有兩個實數(shù)根.

例1用公式法解下列方程:

(1)2x2-x-1=0(2)x2+1.5=-3x

(3)x2-2x+12=0(4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先應(yīng)把它化為一般形式,然后代入公式即可.

補(bǔ):(5)(x-2)(3x-5)=0

三、鞏固練習(xí)

教材第12頁練習(xí)1.(1)(3)(5)或(2)(4)(6).

四、課堂小結(jié)

本節(jié)課應(yīng)把握:

(1)求根公式的概念及其推導(dǎo)過程;

(2)公式法的概念;

(3)應(yīng)用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,留意移項要變號,盡量讓a0;2)找出系數(shù)a,b,c,留意各項的系數(shù)包括符號;3)計算b2-4ac,若結(jié)果為負(fù)數(shù),方程無解;4)若結(jié)果為非負(fù)數(shù),代入求根公式,算出結(jié)果.

(4)初步了解一元二次方程根的狀況.

五、作業(yè)布置

教材第17頁習(xí)題4

數(shù)學(xué)個人優(yōu)秀教案篇2

教學(xué)目標(biāo)

1.等腰三角形的概念.2.等腰三角形的性質(zhì).3.等腰三角形的概念及性質(zhì)的應(yīng)用.

教學(xué)重點:1.等腰三角形的概念及性質(zhì).2.等腰三角形性質(zhì)的應(yīng)用.

教學(xué)難點:等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用.

教學(xué)過程

Ⅰ.提出問題,創(chuàng)設(shè)情境

在前面的學(xué)習(xí)中,我們熟悉了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個簡潔平面圖形關(guān)于某始終線的軸對稱圖形,還能夠通過軸對稱變換來設(shè)計一些漂亮的圖案.這節(jié)課我們就是從軸對稱的角度來熟悉一些我們熟識的幾何圖形.來討論:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?

有的三角形是軸對稱圖形,有的三角形不是.

問題:那什么樣的三角形是軸對稱圖形?

滿意軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.

我們這節(jié)課就來熟悉一種成軸對稱圖形的三角形──等腰三角形.

Ⅱ.導(dǎo)入新課:要求同學(xué)通過自己的思索來做一個等腰三角形.

作一條直線L,在L上取點A,在L外取點B,作出點B關(guān)于直線L的對稱點C,連結(jié)AB、BC、CA,則可得到一個等腰三角形.

等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學(xué)們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.

思索:

1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.

2.等腰三角形的兩底角有什么關(guān)系?

3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

結(jié)論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.由于等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.

要求同學(xué)把自己做的等腰三角形進(jìn)行折疊,找出它的對稱軸,并看它的兩個底角有什么關(guān)系.

沿等腰三角形的頂角的平分線對折,發(fā)覺它兩旁的部分相互重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

由此可以得到等腰三角形的性質(zhì):

1.等腰三角形的兩個底角相等(簡寫成“等邊對等角”).

2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高相互重合(通常稱作“三線合一”).

由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質(zhì).同學(xué)們現(xiàn)在就動手來寫出這些證明過程).

如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,由于

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,由于

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA=∠BDC=90°.

[例1]如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,

求:△ABC各角的度數(shù).

分析:依據(jù)等邊對等角的性質(zhì),我們可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形內(nèi)角和為180°,就可求出△ABC的三個內(nèi)角.

把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.

解:由于AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等邊對等角).

設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,

從而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.

[師]下面我們通過練習(xí)來鞏固這節(jié)課所學(xué)的學(xué)問.

Ⅲ.隨堂練習(xí):1.課本P51練習(xí)1、2、3.2.閱讀課本P

49~P51,然后小結(jié).

Ⅳ.課時小結(jié)

這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對性質(zhì)作了簡潔的應(yīng)用.等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.

我們通過這節(jié)課的學(xué)習(xí),首先就是要理解并把握這些性質(zhì),并且能夠敏捷應(yīng)用它們.

Ⅴ.作業(yè):課本P56習(xí)題12.3第1、2、3、4題.

板書設(shè)計

12.3.1.1等腰三角形

一、設(shè)計方案作出一個等腰三角形

二、等腰三角形性質(zhì):1.等邊對等角2.三線合一

數(shù)學(xué)個人優(yōu)秀教案篇3

一、學(xué)習(xí)目標(biāo):1.添括號法則.

2.利用添括號法則敏捷應(yīng)用完全平方公式

二、重點難點

重點:理解添括號法則,進(jìn)一步熟識乘法公式的合理利用

難點:在多項式與多項式的乘法中適當(dāng)添括號達(dá)到應(yīng)用公式的目的.

三、合作學(xué)習(xí)

Ⅰ.提出問題,創(chuàng)設(shè)情境

請同學(xué)們完成下列運算并回憶去括號法則.

(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)

去括號法則:

去括號時,假如括號前是正號,去掉括號后,括號里的每一項都不變號;

假如括號前是負(fù)號,去掉括號后,括號里的各項都要變號。

1.在等號右邊的括號內(nèi)填上適當(dāng)?shù)捻棧?/p>

(1)a+b-c=a+()(2)a-b+c=a-()

(3)a-b-c=a-()(4)a+b+c=a-()

2.推斷下列運算是否正確.

(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)

(3)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論