2022-2023學(xué)年江蘇省常州市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022-2023學(xué)年江蘇省常州市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022-2023學(xué)年江蘇省常州市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022-2023學(xué)年江蘇省常州市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022-2023學(xué)年江蘇省常州市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年江蘇省常州市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(50題)1.圖示結(jié)構(gòu)中,F(xiàn)=10KN,1為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,a=30。,則各桿強度計算有誤的一項為()。

A.1桿受力20KNB.2桿受力17.3KNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa

2.

3.

4.

5.A.

B.0

C.ln2

D.-ln2

6.下列說法中不能提高梁的抗彎剛度的是()。

A.增大梁的彎度B.增加梁的支座C.提高梁的強度D.增大單位面積的抗彎截面系數(shù)7.A.exln2

B.e2xln2

C.ex+ln2

D.e2x+ln2

8.

9.

10.如圖所示,在乎板和受拉螺栓之間墊上一個墊圈,可以提高()。

A.螺栓的拉伸強度B.螺栓的剪切強度C.螺栓的擠壓強度D.平板的擠壓強度

11.

12.

13.設(shè)函數(shù)f(x)=則f(x)在x=0處()A.可導(dǎo)B.連續(xù)但不可導(dǎo)C.不連續(xù)D.無定義14.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線

15.

16.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-217.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時,下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

18.

19.

20.()。A.-2B.-1C.0D.2

21.

22.

23.

24.

25.

26.

27.

28.

29.當(dāng)x→0時,sinx是sinx的等價無窮小量,則k=()A.0B.1C.2D.3

30.

31.在空間直角坐標(biāo)系中,方程2+3y2+3x2=1表示的曲面是().

A.球面

B.柱面

C.錐面

D.橢球面

32.則f(x)間斷點是x=()。A.2B.1C.0D.-1

33.

34.設(shè)f(x)為連續(xù)函數(shù),則(∫f5x)dx)'等于()A.A.

B.5f(x)

C.f(5x)

D.5f(5x)

35.A.3B.2C.1D.0

36.

37.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C38.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx

39.

40.A.A.連續(xù)點

B.

C.

D.

41.()。A.收斂且和為0

B.收斂且和為α

C.收斂且和為α-α1

D.發(fā)散

42.設(shè)有直線當(dāng)直線l1與l2平行時,λ等于().

A.1B.0C.-1/2D.-1

43.

44.

45.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)46.當(dāng)α<x<b時,f'(x)<0,f'(x)>0。則在區(qū)間(α,b)內(nèi)曲線段y=f(x)的圖形A.A.沿x軸正向下降且為凹B.沿x軸正向下降且為凸C.沿x軸正向上升且為凹D.沿x軸正向上升且為凸

47.

48.設(shè)f(x)為連續(xù)函數(shù),則()'等于().A.A.f(t)B.f(t)-f(a)C.f(x)D.f(x)-f(a)

49.

50.

二、填空題(20題)51.設(shè)y=xe,則y'=_________.

52.

53.

54.

55.

56.

57.

58.

59.設(shè)Ф(x)=∫0xln(1+t)dt,則Ф"(x)=________。

60.

61.設(shè)z=xy,則dz=______.

62.

63.設(shè),將此積分化為極坐標(biāo)系下的積分,此時I=______.

64.設(shè)y=e3x知,則y'_______。

65.微分方程dy+xdx=0的通解為y=__________.

66.

67.設(shè)當(dāng)x≠0時,在點x=0處連續(xù),當(dāng)x≠0時,F(xiàn)(x)=-f(x),則F(0)=______.

68.

69.

70.

三、計算題(20題)71.

72.

73.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.74.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

75.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

76.求曲線在點(1,3)處的切線方程.

77.求微分方程y"-4y'+4y=e-2x的通解.

78.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.79.80.求微分方程的通解.81.證明:82.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.

83.

84.將f(x)=e-2X展開為x的冪級數(shù).85.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.86.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則87.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

88.89.

90.四、解答題(10題)91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

五、高等數(shù)學(xué)(0題)101.f(x)在x=0的某鄰域內(nèi)一階導(dǎo)數(shù)連續(xù)且則()。A.x=0不是f(x)的極值點B.x=0是f(x)的極大值點C.x=0是f(x)的極小值點D.x=0是f(x)的拐點六、解答題(0題)102.

參考答案

1.C

2.A

3.B解析:

4.D解析:

5.A為初等函數(shù),定義區(qū)間為,點x=1在該定義區(qū)間內(nèi),因此

故選A.

6.A

7.B本題考查了一階線性齊次方程的知識點。

因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時,f(0)=ln2,所以C=In2,故f(x)=e2xln2.

注:方程y'=2y求解時也可用變量分離.

8.A

9.C解析:

10.D

11.A

12.D

13.A因為f"(x)=故選A。

14.D本題考查了曲線的漸近線的知識點,

15.B

16.D本題考查的知識點為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

17.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

18.B

19.A

20.A

21.D解析:

22.A解析:

23.B

24.D

25.D

26.C

27.D

28.C

29.B由等價無窮小量的概念,可知=1,從而k=1,故選B。也可以利用等價無窮小量的另一種表述形式,由于當(dāng)x→0時,有sinx~x,由題設(shè)知當(dāng)x→0時,kx~sinx,從而kx~x,可知k=1。

30.B

31.D對照標(biāo)準(zhǔn)二次曲面的方程可知x2+3y2+3x2=1表示橢球面,故選D.

32.Df(x)為分式,當(dāng)X=-l時,分母x+1=0,分式?jīng)]有意義,因此點x=-1為f(x)的間斷點,故選D。

33.B

34.C本題考查的知識點為不定積分的性質(zhì).

(∫f5x)dx)'為將f(5x)先對x積分,后對x求導(dǎo).若設(shè)g(x)=f(5x),則(∫f5x)dx)'=(∫g(x)dx)'表示先將g(x)對x積分,后對x求導(dǎo),因此(∫f(5x)dx)'=(∫g(x)dx)'=g(x)=f(5x).

可知應(yīng)選C.

35.A

36.C解析:

37.C

38.B

39.B

40.C解析:

41.C

42.C解析:

43.C

44.A

45.A本題考查的知識點為無窮級數(shù)的收斂性。

46.A由于在(α,b)內(nèi)f'(x)<0,可知f(x)單調(diào)減少。由于f"(x)>0,

可知曲線y=f'(x)在(α,b)內(nèi)為凹,因此選A。

47.D

48.C本題考查的知識點為可變上限積分的求導(dǎo)性質(zhì).

這是一個基本性質(zhì):若f(x)為連續(xù)函數(shù),則必定可導(dǎo),且

本題常見的錯誤是選D,這是由于考生將積分的性質(zhì)與牛頓-萊布尼茨公式混在了一起而引起的錯誤.

49.C

50.C

51.(x+1)ex本題考查了函數(shù)導(dǎo)數(shù)的知識點。

52.

53.3

54.755.本題考查的知識點為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題。

56.

57.00解析:

58.059.用變上限積分公式(∫0xf(t)dt)"=f(x),則Ф"(x)=ln(1+x),Ф"(x)=。

60.

61.yxy-1dx+xylnxdy

62.

63.

64.3e3x

65.

66.367.1本題考查的知識點為函數(shù)連續(xù)性的概念.

由連續(xù)性的定義可知,若F(x)在點x=0連續(xù),則必有,由題設(shè)可知

68.y=2x+1

69.1/3本題考查了定積分的知識點。

70.[-11]

71.

72.

73.

74.函數(shù)的定義域為

注意

75.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%76.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

77.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

78.

79.

80.

81.

82.

列表:

說明

83.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論