2021-2022學(xué)年江蘇省蘇州市五校聯(lián)考高三壓軸卷數(shù)學(xué)試卷含解析_第1頁(yè)
2021-2022學(xué)年江蘇省蘇州市五校聯(lián)考高三壓軸卷數(shù)學(xué)試卷含解析_第2頁(yè)
2021-2022學(xué)年江蘇省蘇州市五校聯(lián)考高三壓軸卷數(shù)學(xué)試卷含解析_第3頁(yè)
2021-2022學(xué)年江蘇省蘇州市五校聯(lián)考高三壓軸卷數(shù)學(xué)試卷含解析_第4頁(yè)
2021-2022學(xué)年江蘇省蘇州市五校聯(lián)考高三壓軸卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線(xiàn)的焦點(diǎn)為,若拋物線(xiàn)上的點(diǎn)關(guān)于直線(xiàn)對(duì)稱(chēng)的點(diǎn)恰好在射線(xiàn)上,則直線(xiàn)被截得的弦長(zhǎng)為()A. B. C. D.2.已知平行于軸的直線(xiàn)分別交曲線(xiàn)于兩點(diǎn),則的最小值為()A. B. C. D.3.已知集合,,則()A. B. C. D.4.中心在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸的雙曲線(xiàn)的兩條漸近線(xiàn)與圓都相切,則雙曲線(xiàn)的離心率是()A.2或 B.2或 C.或 D.或5.雙曲線(xiàn)的右焦點(diǎn)為,過(guò)點(diǎn)且與軸垂直的直線(xiàn)交兩漸近線(xiàn)于兩點(diǎn),與雙曲線(xiàn)的其中一個(gè)交點(diǎn)為,若,且,則該雙曲線(xiàn)的離心率為()A. B. C. D.6.函數(shù)的圖像大致為()A. B.C. D.7.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.8.若,,則的值為()A. B. C. D.9.記等差數(shù)列的公差為,前項(xiàng)和為.若,,則()A. B. C. D.10.已知不同直線(xiàn)、與不同平面、,且,,則下列說(shuō)法中正確的是()A.若,則 B.若,則C.若,則 D.若,則11.已知集合,,且、都是全集(為實(shí)數(shù)集)的子集,則如圖所示韋恩圖中陰影部分所表示的集合為()A. B.或C. D.12.2019年某校迎國(guó)慶70周年歌詠比賽中,甲乙兩個(gè)合唱隊(duì)每場(chǎng)比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個(gè)位數(shù)字為葉).若甲隊(duì)得分的中位數(shù)是86,乙隊(duì)得分的平均數(shù)是88,則()A.170 B.10 C.172 D.12二、填空題:本題共4小題,每小題5分,共20分。13.如圖,某市一學(xué)校位于該市火車(chē)站北偏東方向,且,已知是經(jīng)過(guò)火車(chē)站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學(xué)校道路,其中,,以學(xué)校為圓心,半徑為的四分之一圓弧分別與相切于點(diǎn).當(dāng)?shù)卣顿Y開(kāi)發(fā)區(qū)域發(fā)展經(jīng)濟(jì),其中分別在公路上,且與圓弧相切,設(shè),的面積為.(1)求關(guān)于的函數(shù)解析式;(2)當(dāng)為何值時(shí),面積為最小,政府投資最低?14.展開(kāi)式中的系數(shù)為_(kāi)________.15.如圖是某幾何體的三視圖,俯視圖中圓的兩條半徑長(zhǎng)為2且互相垂直,則該幾何體的體積為_(kāi)_______.16.已知,圓,直線(xiàn)PM,PN分別與圓O相切,切點(diǎn)為M,N,若,則的最小值為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,角A,B,C的對(duì)邊分別是a,b,c,且向量與向量共線(xiàn).(1)求B;(2)若,,且,求BD的長(zhǎng)度.18.(12分)如圖所示,三棱柱中,平面,點(diǎn),分別在線(xiàn)段,上,且,,是線(xiàn)段的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)若,,,求直線(xiàn)與平面所成角的正弦值.19.(12分)已知橢圓經(jīng)過(guò)點(diǎn),離心率為.(1)求橢圓的方程;(2)經(jīng)過(guò)點(diǎn)且斜率存在的直線(xiàn)交橢圓于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng).連接.求證:存在實(shí)數(shù),使得成立.20.(12分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產(chǎn)品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內(nèi)原有一個(gè)以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎(chǔ)上,將其改建成一個(gè)凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點(diǎn).已知長(zhǎng)為40米,設(shè)為.(上述圖形均視作在同一平面內(nèi))(1)記四邊形的周長(zhǎng)為,求的表達(dá)式;(2)要使改建成的展示區(qū)的面積最大,求的值.21.(12分)已知函數(shù).(1)若函數(shù)不存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;(2)若函數(shù)的兩個(gè)極值點(diǎn)為,,求的最小值.22.(10分)在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.曲線(xiàn)的極坐標(biāo)方程為:,曲線(xiàn)的參數(shù)方程為其中,為參數(shù),為常數(shù).(1)寫(xiě)出與的直角坐標(biāo)方程;(2)在什么范圍內(nèi)取值時(shí),與有交點(diǎn).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

由焦點(diǎn)得拋物線(xiàn)方程,設(shè)點(diǎn)的坐標(biāo)為,根據(jù)對(duì)稱(chēng)可求出點(diǎn)的坐標(biāo),寫(xiě)出直線(xiàn)方程,聯(lián)立拋物線(xiàn)求交點(diǎn),計(jì)算弦長(zhǎng)即可.【詳解】拋物線(xiàn)的焦點(diǎn)為,則,即,設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,如圖:∴,解得,或(舍去),∴∴直線(xiàn)的方程為,設(shè)直線(xiàn)與拋物線(xiàn)的另一個(gè)交點(diǎn)為,由,解得或,∴,∴,故直線(xiàn)被截得的弦長(zhǎng)為.故選:B.【點(diǎn)睛】本題主要考查了拋物線(xiàn)的標(biāo)準(zhǔn)方程,簡(jiǎn)單幾何性質(zhì),點(diǎn)關(guān)于直線(xiàn)對(duì)稱(chēng),屬于中檔題.2.A【解析】

設(shè)直線(xiàn)為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線(xiàn)為,則,,而滿(mǎn)足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點(diǎn)睛】本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查化簡(jiǎn)整理的運(yùn)算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.3.D【解析】

先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道容易題.4.A【解析】

根據(jù)題意,由圓的切線(xiàn)求得雙曲線(xiàn)的漸近線(xiàn)的方程,再分焦點(diǎn)在x、y軸上兩種情況討論,進(jìn)而求得雙曲線(xiàn)的離心率.【詳解】設(shè)雙曲線(xiàn)C的漸近線(xiàn)方程為y=kx,是圓的切線(xiàn)得:,得雙曲線(xiàn)的一條漸近線(xiàn)的方程為∴焦點(diǎn)在x、y軸上兩種情況討論:

①當(dāng)焦點(diǎn)在x軸上時(shí)有:②當(dāng)焦點(diǎn)在y軸上時(shí)有:∴求得雙曲線(xiàn)的離心率2或.

故選:A.【點(diǎn)睛】本小題主要考查直線(xiàn)與圓的位置關(guān)系、雙曲線(xiàn)的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想.解題的關(guān)鍵是:由圓的切線(xiàn)求得直線(xiàn)的方程,再由雙曲線(xiàn)中漸近線(xiàn)的方程的關(guān)系建立等式,從而解出雙曲線(xiàn)的離心率的值.此題易忽視兩解得出錯(cuò)誤答案.5.D【解析】

根據(jù)已知得本題首先求出直線(xiàn)與雙曲線(xiàn)漸近線(xiàn)的交點(diǎn),再利用,求出點(diǎn),因?yàn)辄c(diǎn)在雙曲線(xiàn)上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線(xiàn)方程整理得:,又因?yàn)?,即可得到,故選:D.【點(diǎn)睛】本題主要考查的是雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì)和向量的坐標(biāo)運(yùn)算,離心率問(wèn)題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計(jì)算雙曲線(xiàn)的離心率或范圍,屬于中檔題.6.A【解析】

根據(jù)排除,,利用極限思想進(jìn)行排除即可.【詳解】解:函數(shù)的定義域?yàn)?,恒成立,排除,,?dāng)時(shí),,當(dāng),,排除,故選:.【點(diǎn)睛】本題主要考查函數(shù)圖象的識(shí)別和判斷,利用函數(shù)值的符號(hào)以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.7.B【解析】

先分別判斷命題真假,再由復(fù)合命題的真假性,即可得出結(jié)論.【詳解】為真命題;命題是假命題,比如當(dāng),或時(shí),則不成立.則,,均為假.故選:B【點(diǎn)睛】本題考查復(fù)合命題的真假性,判斷簡(jiǎn)單命題的真假是解題的關(guān)鍵,屬于基礎(chǔ)題.8.A【解析】

取,得到,取,則,計(jì)算得到答案.【詳解】取,得到;取,則.故.故選:.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,取和是解題的關(guān)鍵.9.C【解析】

由,和,可求得,從而求得和,再驗(yàn)證選項(xiàng).【詳解】因?yàn)椋?,所以解得,所以,所以,,,故選:C.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,還考查運(yùn)算求解能力,屬于中檔題.10.C【解析】

根據(jù)空間中平行關(guān)系、垂直關(guān)系的相關(guān)判定和性質(zhì)可依次判斷各個(gè)選項(xiàng)得到結(jié)果.【詳解】對(duì)于,若,則可能為平行或異面直線(xiàn),錯(cuò)誤;對(duì)于,若,則可能為平行、相交或異面直線(xiàn),錯(cuò)誤;對(duì)于,若,且,由面面垂直的判定定理可知,正確;對(duì)于,若,只有當(dāng)垂直于的交線(xiàn)時(shí)才有,錯(cuò)誤.故選:.【點(diǎn)睛】本題考查空間中線(xiàn)面關(guān)系、面面關(guān)系相關(guān)命題的辨析,關(guān)鍵是熟練掌握空間中的平行關(guān)系與垂直關(guān)系的相關(guān)命題.11.C【解析】

根據(jù)韋恩圖可確定所表示集合為,根據(jù)一元二次不等式解法和定義域的求法可求得集合,根據(jù)補(bǔ)集和交集定義可求得結(jié)果.【詳解】由韋恩圖可知:陰影部分表示,,,.故選:.【點(diǎn)睛】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算,涉及到一元二次不等式和函數(shù)定義域的求解;關(guān)鍵是能夠根據(jù)韋恩圖確定所求集合.12.D【解析】

中位數(shù)指一串?dāng)?shù)據(jù)按從小(大)到大(?。┡帕泻螅幵谧钪虚g的那個(gè)數(shù),平均數(shù)指一串?dāng)?shù)據(jù)的算術(shù)平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點(diǎn)睛】本題考查莖葉圖的應(yīng)用,涉及到中位數(shù)、平均數(shù)的知識(shí),是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.(1);(2).【解析】

(1)以點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,,進(jìn)而表示直線(xiàn)的方程,由直線(xiàn)與圓相切構(gòu)建關(guān)系化簡(jiǎn)整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數(shù)值域可求得t的取值范圍,進(jìn)而對(duì)原面積的函數(shù)用含t的表達(dá)式換元,再令進(jìn)行換元,并構(gòu)建新的函數(shù),由二次函數(shù)性質(zhì)即可求得最小值.【詳解】解:(1)以點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,.所以直線(xiàn)的方程為,即.因?yàn)橹本€(xiàn)與圓相切,所以.因?yàn)辄c(diǎn)在直線(xiàn)的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調(diào)遞減.所以,當(dāng),即時(shí),取得最大值,取最小值.答:當(dāng)時(shí),面積為最小,政府投資最低.【點(diǎn)睛】本題考查三角函數(shù)的實(shí)際應(yīng)用,應(yīng)優(yōu)先結(jié)合實(shí)際建立合適的數(shù)學(xué)模型,再按模型求最值,屬于難題.14.【解析】

變換,根據(jù)二項(xiàng)式定理計(jì)算得到答案.【詳解】的展開(kāi)式的通項(xiàng)為:,,取和,計(jì)算得到系數(shù)為:.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.15.20【解析】

由三視圖知該幾何體是一個(gè)圓柱與一個(gè)半球的四分之三的組合,利用球體體積公式、圓柱體積公式計(jì)算即可.【詳解】由三視圖知,該幾何體是由一個(gè)半徑為2的半球的四分之三和一個(gè)底面半徑2、高為4的圓柱組合而成,其體積為.故答案為:20.【點(diǎn)睛】本題考查三視圖以及幾何體體積,考查學(xué)生空間想象能力以及數(shù)學(xué)運(yùn)算能力,是一道容易題.16.【解析】

由可知R為中點(diǎn),設(shè),由過(guò)切點(diǎn)的切線(xiàn)方程即可求得,,代入,,則在直線(xiàn)上,即可得方程為,將,代入化簡(jiǎn)可得,則直線(xiàn)過(guò)定點(diǎn),由則點(diǎn)在以為直徑的圓上,則.即可求得.【詳解】如圖,由可知R為MN的中點(diǎn),所以,,設(shè),則切線(xiàn)PM的方程為,即,同理可得,因?yàn)镻M,PN都過(guò),所以,,所以在直線(xiàn)上,從而直線(xiàn)MN方程為,因?yàn)?,所以,即直線(xiàn)MN方程為,所以直線(xiàn)MN過(guò)定點(diǎn),所以R在以O(shè)Q為直徑的圓上,所以.故答案為:.【點(diǎn)睛】本題考查直線(xiàn)和圓的位置關(guān)系,考查圓的切線(xiàn)方程,定點(diǎn)和圓上動(dòng)點(diǎn)距離的最值問(wèn)題,考查學(xué)生的數(shù)形結(jié)合能力和計(jì)算能力,難度較難.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)【解析】

(1)根據(jù)共線(xiàn)得到,利用正弦定理化簡(jiǎn)得到答案.(2)根據(jù)余弦定理得到,,再利用余弦定理計(jì)算得到答案.【詳解】(1)∵與共線(xiàn),∴.即,∴即,∵,∴,∵,∴.(2),,,在中,由余弦定理得:,∴.則或(舍去).∴,∵∴.在中,由余弦定理得:,∴.【點(diǎn)睛】本題考查了向量共線(xiàn),正弦定理,余弦定理,意在考查學(xué)生的綜合應(yīng)用能力.18.(Ⅰ)證明見(jiàn)詳解;(Ⅱ).【解析】

(Ⅰ)取中點(diǎn)為,根據(jù)幾何關(guān)系,求證四邊形為平行四邊形,即可由線(xiàn)線(xiàn)平行推證線(xiàn)面平行;(Ⅱ)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求得直線(xiàn)的方向向量和平面的法向量,即可求得線(xiàn)面角的正弦值.【詳解】(Ⅰ)取的中點(diǎn),連接,.如下圖所示:因?yàn)椋謩e是線(xiàn)段和的中點(diǎn),所以是梯形的中位線(xiàn),所以.又,所以.因?yàn)椋?,所以四邊形為平行四邊形,所?所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.(Ⅱ)因?yàn)椋移矫?,故可以為原點(diǎn),的方向?yàn)檩S正方向建立如圖所示的空間直角坐標(biāo)系,如下圖所示:不妨設(shè),則,所以,,,,.所以,,.設(shè)平面的法向量為,則所以可取.設(shè)直線(xiàn)與平面所成的角為,則.故可得直線(xiàn)與平面所成的角的正弦值為.【點(diǎn)睛】本題考查由線(xiàn)線(xiàn)平行推證線(xiàn)面平行,以及用向量法求解線(xiàn)面角,屬綜合中檔題.19.(1)(2)證明見(jiàn)解析【解析】

(1)由點(diǎn)可得,由,根據(jù)即可求解;(2)設(shè)直線(xiàn)的方程為,聯(lián)立可得,設(shè),由韋達(dá)定理可得,再根據(jù)直線(xiàn)的斜率公式求得;由點(diǎn)B與點(diǎn)Q關(guān)于原點(diǎn)對(duì)稱(chēng),可設(shè),可求得,則,即可求證.【詳解】解:(1)由題意可知,,又,得,所以橢圓的方程為(2)證明:設(shè)直線(xiàn)的方程為,聯(lián)立,可得,設(shè),則有,因?yàn)?所以,又因?yàn)辄c(diǎn)B與點(diǎn)Q關(guān)于原點(diǎn)對(duì)稱(chēng),所以,即,則有,由點(diǎn)在橢圓上,得,所以,所以,即,所以存在實(shí)數(shù),使成立【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線(xiàn)的斜率公式的應(yīng)用,考查運(yùn)算能力.20.(1),.(2)【解析】

(1)由余弦定理的,然后根據(jù)直線(xiàn)與圓相切的性質(zhì)求出,從而求出;(2)求得的表達(dá)式,通過(guò)求導(dǎo)研究函數(shù)的單調(diào)性求得最大值.【詳解】解:(1)連.由條件得.在三角形中,,,,由余弦定理,得,因?yàn)榕c半圓相

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論