2022年湖南省懷化市成考專升本高等數(shù)學一自考真題(含答案)_第1頁
2022年湖南省懷化市成考專升本高等數(shù)學一自考真題(含答案)_第2頁
2022年湖南省懷化市成考專升本高等數(shù)學一自考真題(含答案)_第3頁
2022年湖南省懷化市成考專升本高等數(shù)學一自考真題(含答案)_第4頁
2022年湖南省懷化市成考專升本高等數(shù)學一自考真題(含答案)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022年湖南省懷化市成考專升本高等數(shù)學一自考真題(含答案)學校:________班級:________姓名:________考號:________

一、單選題(50題)1.設D={(x,y){|x2+y2≤a2,a>0,y≥0),在極坐標下二重積分(x2+y2)dxdy可以表示為()A.∫0πdθ∫0ar2dr

B.∫0πdθ∫0ar3dr

C.D.

2.

3.設f(x)為連續(xù)函數(shù),則等于().A.A.f(x2)B.x2f(x2)C.xf(x2)D.2xf(x2)

4.

A.f(x)

B.f(x)+C

C.f/(x)

D.f/(x)+C

5.A.A.Ax

B.

C.

D.

6.

7.

8.

9.

10.

11.

12.

A.0B.2C.4D.8

13.

14.若x0為f(x)的極值點,則().A.A.f(x0)必定存在,且f(x0)=0

B.f(x0)必定存在,但f(x0)不-定等于零

C.f(x0)不存在或f(x0)=0

D.f(x0)必定不存在

15.

16.設函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導,f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量17.()。A.為無窮小B.為無窮大C.不存在,也不是無窮大D.為不定型18.設f(0)=0,且存在,則等于().A.A.f'(x)B.f'(0)C.f(0)D.f(x)

19.在下列函數(shù)中,在指定區(qū)間為有界的是()。

A.f(x)=22z∈(一∞,0)

B.f(x)=lnxz∈(0,1)

C.

D.f(x)=x2x∈(0,+∞)

20.

21.當x→0時,3x2+2x3是3x2的()。A.高階無窮小B.低階無窮小C.同階無窮小但不是等價無窮小D.等價無窮小

22.

23.()。A.3B.2C.1D.024.過曲線y=xlnx上M0點的切線平行于直線y=2x,則切點M0的坐標是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)25.A.有一個拐點B.有三個拐點C.有兩個拐點D.無拐點

26.

27.

28.設曲線y=x-ex在點(0,-1)處與直線l相切,則直線l的斜率為().A.A.∞B.1C.0D.-1

29.

30.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)

31.下列等式成立的是()。

A.

B.

C.

D.

32.設y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx

33.曲線的水平漸近線的方程是()

A.y=2B.y=-2C.y=1D.y=-134.A.A.發(fā)散B.條件收斂C.絕對收斂D.無法判定斂散性35.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

36.

()A.x2

B.2x2

C.xD.2x37.()。A.

B.

C.

D.

38.

39.

40.

41.A.A.1/2B.1C.2D.e

42.

A.

B.

C.

D.

43.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉拋物面D.柱面

44.設函數(shù)f(x)在區(qū)間[0,1]上可導,且f(x)>0,則()

A.f(1)>f(0)B.f(1)<f(0)C.f(1)=f(0)D.f(1)與f(0)的值不能比較45.設函數(shù)y=f(x)二階可導,且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當△x>0時,有()A.△y>dy>0

B.△<dy<0

C.dy>Ay>0

D.dy<△y<0

46.已知作用在簡支梁上的力F與力偶矩M=Fl,不計桿件自重和接觸處摩擦,則以下關于固定鉸鏈支座A的約束反力表述正確的是()。

A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同47.設y=exsinx,則y'''=A.cosx·ex

B.sinx·ex

C.2ex(cosx-sinx)

D.2ex(sinx-cosx)

48.

A.2B.1C.1/2D.0

49.設Y=e-3x,則dy等于().

A.e-3xdx

B.-e-3xdx

C.-3e-3xdx

D.3e-3xdx

50.設f(x)在點x0處取得極值,則()

A.f"(x0)不存在或f"(x0)=0

B.f"(x0)必定不存在

C.f"(x0)必定存在且f"(x0)=0

D.f"(x0)必定存在,不一定為零

二、填空題(20題)51.

52.曲線y=x3-3x+2的拐點是__________。

53.

54.直線的方向向量為________。

55.

56.

57.

58.59.設曲線y=f(x)在點(1,f(1))處的切線平行于x軸,則該切線方程為______.

60.

61.

62.微分方程y'=0的通解為______.63.

64.

65.

66.設z=x2+y2-xy,則dz=__________。

67.設y=3x,則y"=_________。68.

69.

70.

三、計算題(20題)71.求曲線在點(1,3)處的切線方程.72.將f(x)=e-2X展開為x的冪級數(shù).73.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.74.設平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.75.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.76.77.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.78.求微分方程的通解.79.證明:80.

81.

82.求微分方程y"-4y'+4y=e-2x的通解.

83.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

84.

85.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?

86.當x一0時f(x)與sin2x是等價無窮小量,則87.

88.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.89.

90.

四、解答題(10題)91.

92.

93.

94.

95.求由曲線y2=(x-1)3和直線x=2所圍成的圖形繞x軸旋轉所得的旋轉體的體積.

96.

97.求微分方程y"-y'-2y=ex的通解。

98.

99.

100.求微分方程xy'-y=x2的通解.五、高等數(shù)學(0題)101.以下結論正確的是()。

A.∫f"(x)dx=f(x)

B.

C.∫df(z)=f(x)

D.d∫f(x)dx=f(x)dx

六、解答題(0題)102.

參考答案

1.B因為D:x2+y2≤a2,a>0,y≥0,令則有r2≤a2,0≤r≤a,0≤θ≤π,所以(x2+y2)dxdy=∫0πdθ∫0ar2.rdr=∫0πdθ∫0ar3.rdr故選B。

2.C

3.D解析:

4.A由不定積分的性質(zhì)“先積分后求導,作用抵消”可知應選A.

5.D

6.D

7.A

8.B解析:

9.D

10.D解析:

11.B

12.A解析:

13.C解析:

14.C本題考查的知識點為函數(shù)極值點的性質(zhì).

若x0為函數(shù)y=f(x)的極值點,則可能出現(xiàn)兩種情形:

(1)f(x)在點x0處不可導,如y=|x|,在點x0=0處f(x)不可導,但是點x0=0為f(x)=|x|的極值點.

(2)f(x)在點x0可導,則由極值的必要條件可知,必定有f(x0)=0.

從題目的選項可知應選C.

本題常見的錯誤是選A.其原因是考生將極值的必要條件:“若f(x)在點x0可導,且x0為f(x)的極值點,則必有f(x0)=0”認為是極值的充分必要條件.

15.C

16.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應選A.

17.D

18.B本題考查的知識點為導數(shù)的定義.

由于存在,因此

可知應選B.

19.A∵0<2x<1x∈(一∞,0)∴f(x)=2x在區(qū)間(一∞,0)內(nèi)為有界函數(shù)。

20.C

21.D本題考查的知識點為無窮小階的比較。

由于,可知點x→0時3x2+2x3與3x2為等價無窮小,故應選D。

22.A

23.A

24.D本題考查的知識點為導數(shù)的幾何意義.

由導數(shù)的幾何意義可知,若y=f(x)在點x0處可導,則曲線y=f(x)在點(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).

由于y=xlnx,可知

y'=1+lnx,

切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有

1+lnx0=2,

可解得x0=e,從而知

y0=x0lnx0=elne=e.

故切點M0的坐標為(e,e),可知應選D.

25.D本題考查了曲線的拐點的知識點

26.D解析:

27.C

28.C本題考查的知識點為導數(shù)的幾何意義.

由于y=x-ex,y'=1-ex,y'|x=0=0.由導數(shù)的幾何意義可知,曲線y=x-ex在點(0,-1)處切線斜率為0,因此選C.

29.C

30.C本題考查的知識點為判定函數(shù)的單調(diào)性。

y=ln(1+x2)的定義域為(-∞,+∞)。

當x>0時,y'>0,y為單調(diào)增加函數(shù),

當x<0時,y'<0,y為單調(diào)減少函數(shù)。

可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應選C。

31.C

32.B

33.D

34.C

35.D可以將方程認作可分離變量方程;也可以將方程認作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認作一階線性微分方程.由通解公式可得解法3認作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

36.A

37.A

38.B

39.A

40.B

41.C

42.C

43.C本題考查的知識點為二次曲面的方程。

將x2+y2-z=0與二次曲面標準方程對照,可知其為旋轉拋面,故應選C。

44.A由f"(x)>0說明f(x)在[0,1]上是增函數(shù),因為1>0,所以f(1)>f(0)。故選A。

45.B

46.D

47.C由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).

48.D本題考查的知識點為重要極限公式與無窮小量的性質(zhì).

49.C

50.A若點x0為f(x)的極值點,可能為兩種情形之一:(1)若f(x)在點x0處可導,由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點x=0處取得極小值,但f(x)=|x|在點x=0處不可導,這表明在極值點處,函數(shù)可能不可導。故選A。

51.本題考查了一元函數(shù)的一階導數(shù)的知識點。

52.(02)

53.454.直線l的方向向量為

55.22解析:

56.

57.

58.59.y=f(1)本題考查的知識點有兩個:一是導數(shù)的幾何意義,二是求切線方程.

設切點為(x0,f(x0)),則曲線y=f(x)過該點的切線方程為

y-f(x0)=f'(x0)(x-x0).

由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應有f'(x0)=0,故所求切線方程為

y=f(1)=0.

本題中考生最常見的錯誤為:將曲線y=f(x)在點(x0,f(x0))處的切線方程寫為

y-f(x0)=f'(x)(x-x0)

而導致錯誤.本例中錯誤地寫為

y-f(1)=f'(x)(x-1).

本例中由于f(x)為抽象函數(shù),一些考生不習慣于寫f(1),有些人誤寫切線方程為

y-1=0.

60.

61.62.y=C1本題考查的知識點為微分方程通解的概念.

微分方程為y'=0.

dy=0.y=C.

63.

64.1

65.

66.(2x-y)dx+(2y-x)dy67.3e3x

68.

69.(00)

70.71.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或寫為2x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

72.

73.

74.由二重積分物理意義知

75.

76.

77.

列表:

說明

78.

79.

80.

81.

82.解:原方程對應的齊次方程為y"-4y'+4y=0,

83.

84.

85.需求規(guī)律為Q=100ep-2.25p

∴當P=10時價格上漲1%

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論