2022年陜西省銅川市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2022年陜西省銅川市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2022年陜西省銅川市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2022年陜西省銅川市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2022年陜西省銅川市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年陜西省銅川市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________一、單選題(20題)1.

2.

3.設(shè)是正項(xiàng)級(jí)數(shù),且un<υn(n=1,2,…),則下列命題正確的是()

A.B.C.D.4.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.

B.

C.

D.

5.

6.

7.

8.圖示結(jié)構(gòu)中,F(xiàn)=10KN,1為圓桿,直徑d=15mm,2為正方形截面桿,邊長(zhǎng)為a=20mm,a=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。

A.1桿受力20KNB.2桿受力17.3KNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa9.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線的兩個(gè)力的作用,則()。

A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡

10.A.有一個(gè)拐點(diǎn)B.有兩個(gè)拐點(diǎn)C.有三個(gè)拐點(diǎn)D.無(wú)拐點(diǎn)

11.為了提高混凝土的抗拉強(qiáng)度,可在梁中配置鋼筋。若矩形截面梁的彎矩圖如圖所示,梁中鋼筋(圖中虛線所示)配置最為合理的是()。

A.

B.

C.

D.

12.

13.設(shè)y=e-3x,則dy=A.e-3xdx

B.-e-3xdx

C.-3e-3xdx

D.3e-3xdx

14.等于().A.A.0

B.

C.

D.∞

15.

16.

17.

18.A.f(1)-f(0)

B.2[f(1)-f(0)]

C.2[f(2)-f(0)]

D.

19.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域?yàn)?)。

A.[一1,1]B.[0,2]C.[0,1]D.[1,2]

20.

A.6xarctanx2

B.6xtanx2+5

C.5

D.6xcos2x

二、填空題(20題)21.設(shè)f(x+1)=4x2+3x+1,g(x)=f(e-x),則g(x)=__________.

22.y″+5y′=0的特征方程為——.

23.

24.

25.設(shè)f(x)=ax3-6ax2+b在區(qū)間[-1,2]的最大值為2,最小值為-29,又知a>0,則a,b的取值為_(kāi)_____.

26.設(shè)y=ex/x,則dy=________。

27.

28.

29.

30.

31.

32.

33.

34.過(guò)坐標(biāo)原點(diǎn)且與平面3x-7y+5z-12=0平行的平面方程為_(kāi)________.

35.

36.

37.

38.

39.

40.已知平面π:2x+y-3z+2=0,則過(guò)原點(diǎn)且與π垂直的直線方程為_(kāi)_____.

三、計(jì)算題(20題)41.

42.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

43.求微分方程y"-4y'+4y=e-2x的通解.

44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

45.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

46.求曲線在點(diǎn)(1,3)處的切線方程.

47.求微分方程的通解.

48.

49.

50.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

51.

52.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

53.

54.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

56.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

57.證明:

58.

59.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

60.

四、解答題(10題)61.

62.

63.

64.求通過(guò)點(diǎn)(1,2)的曲線方程,使此曲線在[1,x]上形成的曲邊梯形面積的值等于此曲線弧終點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y乘積的2倍減去4。

65.

66.

67.

68.將f(x)=ln(1+x2)展開(kāi)為x的冪級(jí)數(shù).

69.

70.

五、高等數(shù)學(xué)(0題)71.若函數(shù)f(x)的導(dǎo)函數(shù)為sinx,則f(x)的一個(gè)原函數(shù)是__________。

六、解答題(0題)72.

參考答案

1.B

2.A

3.B由正項(xiàng)級(jí)數(shù)的比較判別法可以得到,若小的級(jí)數(shù)發(fā)散,則大的級(jí)數(shù)必發(fā)散,故選B。

4.B本題考查的知識(shí)點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.

注意到A左端為定積分,定積分存在時(shí),其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.

由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.

5.A解析:

6.C

7.B解析:

8.C

9.C

10.D

11.D

12.D

13.C

14.A

15.A

16.D

17.A

18.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.

可知應(yīng)選D.

19.B∵一1≤x一1≤1∴0≤x≤2。

20.C

21.

22.由特征方程的定義可知,所給方程的特征方程為

23.

24.2本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.

f'(x)=(x2)'=2x,

f"(x)=(2x)'=2.

25.

f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以,f''(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時(shí),f(x)最大,即b=2;當(dāng)x=2時(shí),f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=.

26.

27.

28.3yx3y-1

29.

解析:

30.

31.

32.

本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

所給級(jí)數(shù)為缺項(xiàng)情形,

33.[-11]

34.3x-7y+5z=0本題考查了平面方程的知識(shí)點(diǎn)。已知所求平面與3x-7y+5z-12=0平行,則其法向量為(3,-7,5),故所求方程為3(x-0)+(-7)(y-0)+5(z-0)=0,即3x-7y+5z=0.

35.<0本題考查了反常積分的斂散性(比較判別法)的知識(shí)點(diǎn)。

36.0.

本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)為奇函數(shù),因此

37.0<k≤10<k≤1解析:

38.

39.f(x)+Cf(x)+C解析:

40.

解析:本題考查的知識(shí)點(diǎn)為直線方程和直線與平面的關(guān)系.

由于平面π與直線l垂直,則直線的方向向量s必定平行于平面的法向量n,因此可以取s=n=(2,1,-3).又知直線過(guò)原點(diǎn)-由直線的標(biāo)準(zhǔn)式方程可知為所求直線方程.

41.

42.

43.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

44.

45.

列表:

說(shuō)明

46.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

47.

48.

49.由一階線性微分方程通解公式有

50.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

51.

52.由等價(jià)無(wú)窮小量的定義可知

53.

54.

55.函數(shù)的定義域?yàn)?/p>

注意

56.由二重積分物理意義知

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.由于

因此

本題考查的知識(shí)點(diǎn)為將函數(shù)展開(kāi)為冪級(jí)數(shù).

綱中指出“會(huì)運(yùn)用ex,sinx,cosx,ln(1+x),的麥克勞林展開(kāi)式,將一些簡(jiǎn)單

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論