版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年安徽省亳州市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.微分方程yy'=1的通解為A.A.y=x2+C
B.y2=x+C
C.1/2y2=Cx
D.1/2y2=x+C
2.()。A.3B.2C.1D.0
3.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1
4.
5.
6.
7.
8.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-29.
10.
11.下列關(guān)系正確的是()。A.
B.
C.
D.
12.
13.當(dāng)x→0時(shí),3x2+2x3是3x2的()。A.高階無窮小B.低階無窮小C.同階無窮小但不是等價(jià)無窮小D.等價(jià)無窮小14.曲線y=1nx在點(diǎn)(e,1)處切線的斜率為().A.A.e2
B.eC.1D.1/e
15.
16.設(shè)y=2^x,則dy等于().
A.x.2x-1dx
B.2x-1dx
C.2xdx
D.2xln2dx
17.
18.
19.平衡積分卡控制是()首創(chuàng)的。
A.戴明B.施樂公司C.卡普蘭和諾頓D.國際標(biāo)準(zhǔn)化組織
20.
二、填空題(20題)21.設(shè)z=xy,則dz=______.
22.
23.
24.
25.y=ln(1+x2)的單調(diào)增加區(qū)間為______.26.
27.
28.
29.
30.y=x3-27x+2在[1,2]上的最大值為______.
31.
32.微分方程y=x的通解為________。
33.
34.
35.
36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.42.43.44.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.45.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.46.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.47.證明:48.49.將f(x)=e-2X展開為x的冪級數(shù).
50.
51.求微分方程的通解.52.求曲線在點(diǎn)(1,3)處的切線方程.53.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則54.
55.
56.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
57.求微分方程y"-4y'+4y=e-2x的通解.
58.
59.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
60.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).四、解答題(10題)61.
62.
63.
64.(本題滿分8分)
65.66.67.求垂直于直線2x-6y+1=0且與曲線y=x3+3x2-5相切的直線方程.68.
69.
70.五、高等數(shù)學(xué)(0題)71.
求y(2)。
六、解答題(0題)72.
參考答案
1.D
2.A
3.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
4.B
5.D
6.C解析:
7.A
8.C本題考查的知識點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
9.C
10.C
11.C本題考查的知識點(diǎn)為不定積分的性質(zhì)。
12.A解析:
13.D本題考查的知識點(diǎn)為無窮小階的比較。
由于,可知點(diǎn)x→0時(shí)3x2+2x3與3x2為等價(jià)無窮小,故應(yīng)選D。
14.D本題考查的知識點(diǎn)為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線),y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f(x0).
由于y=lnx,可知可知應(yīng)選D.
15.C
16.D南微分的基本公式可知,因此選D.
17.C
18.A
19.C
20.B
21.yxy-1dx+xylnxdy
22.e-2本題考查了函數(shù)的極限的知識點(diǎn),
23.2
24.(-∞2)25.(0,+∞)本題考查的知識點(diǎn)為利用導(dǎo)數(shù)符號判定函數(shù)的單調(diào)性.
由于y=ln(1+x2),其定義域?yàn)?-∞,+∞).
又由于,令y'=0得唯一駐點(diǎn)x=0.
當(dāng)x>0時(shí),總有y'>0,從而y單調(diào)增加.
可知y=ln(1+x2)的單調(diào)增加區(qū)間為(0,+∞).
26.
本題考查的知識點(diǎn)為二重積分的計(jì)算.
27.ex228.0
29.-sinx30.-24本題考查的知識點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.
若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:
(1)求出f'(x).
(2)求出f(x)在(a,b)內(nèi)的駐點(diǎn)x1,…,xk.
(3)比較f(x1),f(x2),…,f(xk),f(a),f(b).其中最大(小)值為f(x)在[a,b]上的最大(小)值,相應(yīng)的點(diǎn)x為f(x)的最大(小)值點(diǎn).
y=x3-27x+2,
則y'=3x2-27=3(x-3)(x+3),
令y'=0得y的駐點(diǎn)x1=-3,x2=3,可知這兩個(gè)駐點(diǎn)都不在(1,2)內(nèi).
由于f(1)=-24,f(2)=-44,可知y=x3-27x+2在[1,2]上的最大值為-24.
本題考生中出現(xiàn)的錯(cuò)誤多為求出駐點(diǎn)x1=-3,x2=3之后,直接比較
f(-3)=56,f(3)=-52,f(1)=-24,f(2)=-44,
得出y=x3-27x+2在[1,2]上的最大值為f(-3)=56.其錯(cuò)誤的原因是沒有判定駐點(diǎn)x1=-3,x2=3是否在給定的區(qū)間(1,2)內(nèi),這是值得考生注意的問題.在模擬試題中兩次出現(xiàn)這類問題,目的就是希望能引起考生的重視.
本題還可以采用下列解法:注意到y(tǒng)'=3(x-3)(x+3),在區(qū)間[1,2]上有y'<0,因此y為單調(diào)減少函數(shù)??芍?/p>
x=2為y的最小值點(diǎn),最小值為y|x=2=-44.
x=1為y的最大值點(diǎn),最大值為y|x=1=-24.
31.32.本題考查可分離變量的微分方程.分離變量得dy=xdx,兩端分別積分,∫dy=∫xdx,
33.
解析:
34.
35.36.對已知等式兩端求導(dǎo),得
37.
38.6x2
39.1/340.由可變上限積分求導(dǎo)公式可知41.函數(shù)的定義域?yàn)?/p>
注意
42.
43.
44.
45.由二重積分物理意義知
46.
47.
48.
49.
50.
51.52.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
53.由等價(jià)無窮小量的定義可知54.由一階線性微分方程通解公式有
55.
則
56.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
57.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
58.
59.
60.
列表:
說明
61.
62.63.
64.解法1
解法2
65.
66.67.由于直線2x-6y+1=0的斜率k=1/3,與其垂直的直線的斜率k1=-1/k=-3.對于y=x3+3x25,y'=3x2+6x.由題意應(yīng)有3x2+6x=-3,因此x2+2x+1=0,x=-1,此時(shí)y=(-1)3+3(-1)2-5=-3.即切點(diǎn)為(-1,-3).切線方程為y+3=-3(x+1),或?qū)憺?x+y+6=0.本題考查的知識點(diǎn)為求曲線的切線方程.
求曲線y=f(x,y)的切線方程,通常要找出切點(diǎn)及函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值.所給問題沒有給出切點(diǎn),因此依已給條件找出切點(diǎn)是首要問題.得出切點(diǎn)、切線的斜率后,可依直線的點(diǎn)斜式方程求出切線方程.68.本題考查的知識點(diǎn)為兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 舞蹈藝術(shù)之魅力
- 人事部在企業(yè)戰(zhàn)略中的角色計(jì)劃
- 感恩父母與愛同行的演講稿5篇
- 2024年員工三級安全培訓(xùn)考試題(滿分必刷)
- 2023-2024年項(xiàng)目安全培訓(xùn)考試題帶答案(奪分金卷)
- 社團(tuán)運(yùn)營與成員發(fā)展
- 《本科心律失?!氛n件
- 教授能量轉(zhuǎn)換守恒
- 北師大版八年級下冊數(shù)學(xué)期末測試題
- 印刷設(shè)備智能化升級-第1篇-洞察分析
- 一年級學(xué)生英語學(xué)科評語
- 來料檢驗(yàn)員工作總結(jié)
- 工商企業(yè)管理專業(yè)教學(xué)資源庫申報(bào)書-專業(yè)教學(xué)資源庫備選項(xiàng)目材料
- 智能充電樁的管理與優(yōu)化調(diào)度
- 急診科副主任個(gè)人工作述職報(bào)告
- 硬件工程師年終總結(jié)報(bào)告
- 音樂盛典策劃方案
- 學(xué)校新媒體管理制度規(guī)章
- 狐貍的生物學(xué)
- 全球氣候變化和應(yīng)對措施
- 小麥冬季管理技術(shù)意見
評論
0/150
提交評論