版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年安徽省黃山市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.
3.
4.
5.
6.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
7.A.-1
B.1
C.
D.2
8.
9.
10.
11.“目標(biāo)的可接受性”可以用()來(lái)解釋。
A.公平理論B.雙因素理論C.期望理論D.強(qiáng)化理論12.()A.A.sinx+C
B.cosx+C
C.-sinx+C
D.-cosx+C
13.
14.
15.
16.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
17.
18.設(shè)x是f(x)的一個(gè)原函數(shù),則f(x)=A.A.x2/2B.2x2
C.1D.C(任意常數(shù))
19.
20.
21.
22.
23.微分方程(y)2=x的階數(shù)為()A.1B.2C.3D.4
24.設(shè)函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導(dǎo),f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().
A.不存在零點(diǎn)
B.存在唯一零點(diǎn)
C.存在極大值點(diǎn)
D.存在極小值點(diǎn)
25.
26.
27.
28.下列關(guān)于構(gòu)建的幾何形狀說(shuō)法不正確的是()。
A.軸線為直線的桿稱為直桿B.軸線為曲線的桿稱為曲桿C.等截面的直桿稱為等直桿D.橫截面大小不等的桿稱為截面桿
29.
30.用待定系數(shù)法求微分方程y"-y=xex的一個(gè)特解時(shí),特解的形式是(式中α、b是常數(shù))。A.(αx2+bx)ex
B.(αx2+b)ex
C.αx2ex
D.(αx+b)ex
31.
32.設(shè)f(x)在Xo處不連續(xù),則
A.f(x0)必存在
B.f(x0)必不存在
C.
D.
33.
A.必定存在且值為0B.必定存在且值可能為0C.必定存在且值一定不為0D.可能不存在34.A.A.yxy-1
B.yxy
C.xylnx
D.xylny
35.
36.若函數(shù)f(x)=5x,則f'(x)=
A.5x-1
B.x5x-1
C.5xln5
D.5x
37.()。A.2πB.πC.π/2D.π/438.A.A.
B.e
C.e2
D.1
39.A.A.arctanx2
B.2xarctanx
C.2xarctanx2
D.
40.
41.已知作用在簡(jiǎn)支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同
42.A.-2(1-x2)2+C
B.2(1-x2)2+C
C.
D.
43.設(shè)函數(shù)f(x)=2lnx+ex,則f'(2)等于
A.eB.1C.1+e2
D.ln244.
45.設(shè)y=2-cosx,則y'=
A.1-sinxB.1+sinxC.-sinxD.sinx
46.
47.A.A.2
B.
C.1
D.-2
48.設(shè)y=sin2x,則y等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x
49.
50.A.3B.2C.1D.1/2二、填空題(20題)51.設(shè)z=2x+y2,則dz=______。52.
53.設(shè)f(x,y)=sin(xy2),則df(x,y)=______.
54.
55.設(shè)y=ln(x+2),貝y"=________。56.
sint2dt=________。57.設(shè),則y'=________。58.
59.
60.函數(shù)的間斷點(diǎn)為_(kāi)_____.
61.
62.
63.
64.
65.
66.函數(shù)y=x3-2x+1在區(qū)間[1,2]上的最小值為_(kāi)_____.
67.68.69.70.微分方程y"+y=0的通解為_(kāi)_____.三、計(jì)算題(20題)71.
72.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
73.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
74.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).75.76.求曲線在點(diǎn)(1,3)處的切線方程.77.
78.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
79.
80.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.81.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).82.83.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.84.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.85.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.86.證明:
87.求微分方程y"-4y'+4y=e-2x的通解.
88.求微分方程的通解.89.
90.四、解答題(10題)91.(本題滿分8分)
92.求曲線y=x3-3x+5的拐點(diǎn).93.94.
95.
96.
97.給定曲線y=x3與直線y=px-q(其中p>0),求p與q為何關(guān)系時(shí),直線y=px-q是y=x3的切線.
98.
99.
100.某廠要生產(chǎn)容積為Vo的圓柱形罐頭盒,問(wèn)怎樣設(shè)計(jì)才能使所用材料最省?
五、高等數(shù)學(xué)(0題)101.
求y(2)。
六、解答題(0題)102.設(shè)y=x2ex,求y'。
參考答案
1.C
2.A
3.C
4.B
5.D解析:
6.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
7.A
8.A
9.C
10.C
11.C解析:目標(biāo)的可接受性可用期望理論來(lái)理解。
12.A
13.A
14.C
15.C
16.A本題考查的知識(shí)點(diǎn)為無(wú)窮級(jí)數(shù)的收斂性。
17.C
18.Cx為f(x)的一個(gè)原函數(shù),由原函數(shù)定義可知f(x)=x'=1,故選C。
19.C解析:
20.D
21.A
22.D
23.A
24.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點(diǎn)定理可知,y=f(x)在(a,b)內(nèi)至少存在一個(gè)零點(diǎn).又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點(diǎn),則至多存在一個(gè).
綜合上述f(x)在(a,b)內(nèi)存在唯一零點(diǎn),故選B.
25.B解析:
26.C
27.A解析:
28.D
29.C
30.Ay"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1
y"-y=xex中自由項(xiàng)f(x)=xex,α=1是特征單根,應(yīng)設(shè)y*=x(ax+b)ex=(αx2+bx)ex。
所以選A。
31.D解析:
32.B
33.B
34.A
35.C
36.C本題考查了導(dǎo)數(shù)的基本公式的知識(shí)點(diǎn)。f'(x)=(5x)'=5xln5.
37.B
38.C本題考查的知識(shí)點(diǎn)為重要極限公式.
39.C
40.B
41.D
42.C
43.C本題考查了函數(shù)在一點(diǎn)的導(dǎo)數(shù)的知識(shí)點(diǎn).
因f(x)=2lnx+ex,于是f'(x)=2/x+ex,故f'(2)=1+e2.
44.D
45.D解析:y=2-cosx,則y'=2'-(cosx)'=sinx。因此選D。
46.B
47.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
48.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.
49.C
50.B,可知應(yīng)選B。51.2dx+2ydy
52.
53.y2cos(xy2)dx+2xycos(xy2)dydf(x,y)=cos(xy2)d(xy2)=cos(xy2)(y2dx+2xydy)=y2cos(xy2)dx+2xycos(xy2)dy也可先求出,而得出df(x,y).
54.
55.
56.
57.58.1/6
59.160.本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).
僅當(dāng),即x=±1時(shí),函數(shù)沒(méi)有定義,因此x=±1為函數(shù)的間斷點(diǎn)。
61.
62.
63.本題考查了一元函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)
64.
65.
解析:66.0本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問(wèn)題.
通常求解的思路為:
先求出連續(xù)函數(shù)f(x)在(a,b)內(nèi)的所有駐點(diǎn)x1,…,xk.
比較f(x1),f(x2),…,f(xk),f(a),f(b),其中最大(小)值即為f(x)在[a,b]上的最大(小)值,相應(yīng)的x即為,(x)在[a,b]上的最大(小)值點(diǎn).
由y=x3-2x+1,可得
Y'=3x2-2.
令y'=0得y的駐點(diǎn)為,所給駐點(diǎn)皆不在區(qū)間(1,2)內(nèi),且當(dāng)x∈(1,2)時(shí)有
Y'=3x2-2>0.
可知y=x3-2x+1在[1,2]上為單調(diào)增加函數(shù),最小值點(diǎn)為x=1,最小值為f(1)=0.
注:也可以比較f(1),f(2)直接得出其中最小者,即為f(x)在[1,2]上的最小值.
本題中常見(jiàn)的錯(cuò)誤是,得到駐點(diǎn)和之后,不討論它們是否在區(qū)間(1,2)內(nèi).而是錯(cuò)誤地比較
從中確定f(x)在[1,2]上的最小值.則會(huì)得到錯(cuò)誤結(jié)論.
67.-1
68.-1本題考查了利用導(dǎo)數(shù)定義求極限的知識(shí)點(diǎn)。
69.70.y=C1cosx+C2sinx本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.
特征方程為r2+1=0,特征根為r=±i,因此所給微分方程的通解為y=C1cosx+C2sinx.
71.72.由等價(jià)無(wú)窮小量的定義可知
73.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
74.
75.
76.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
77.
則
78.
79.
80.函數(shù)的定義域?yàn)?/p>
注意
81.
列表:
說(shuō)明
82.
83.由二重積分物理意義知
84.
85.
86.
87.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
88.89.由一階線性微分方程通解公式有
90.
91.解法1
解法2
92.y'=3x2-3,y''=6x令y''=0,解得x=0當(dāng)x<0時(shí),y''<0;當(dāng)x>0時(shí),y''>0。當(dāng)x=0時(shí),y=5因此,點(diǎn)(0,5)為所給曲線的拐點(diǎn)。
93.
94.
95.
96.
97.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度印刷廠與出版社合作打印合同范本4篇
- 2025年度外墻保溫技術(shù)改造項(xiàng)目施工合同書(shū)3篇
- 2025年度生態(tài)旅游開(kāi)發(fā)承包合同模板4篇
- 2024舞蹈賽事組織與管理服務(wù)合同
- 2025年度特色小吃店聯(lián)合經(jīng)營(yíng)合同3篇
- 2025年度廚房設(shè)備安裝與用戶培訓(xùn)支持合同3篇
- 2025年度物流中心承包經(jīng)營(yíng)合作協(xié)議書(shū)4篇
- 2024退學(xué)協(xié)議書(shū):涉及在線教育平臺(tái)學(xué)員退費(fèi)及課程重置合同3篇
- 2024網(wǎng)絡(luò)安全防護(hù)系統(tǒng)技術(shù)開(kāi)發(fā)與服務(wù)合同
- 2024版設(shè)備軟件采購(gòu)及技術(shù)服務(wù)合同
- 上海車位交易指南(2024版)
- 醫(yī)學(xué)脂質(zhì)的構(gòu)成功能及分析專題課件
- 通用電子嘉賓禮薄
- 錢素云先進(jìn)事跡學(xué)習(xí)心得體會(huì)
- 道路客運(yùn)車輛安全檢查表
- 宋曉峰辣目洋子小品《來(lái)啦老妹兒》劇本臺(tái)詞手稿
- 附錄C(資料性)消防安全評(píng)估記錄表示例
- 噪音檢測(cè)記錄表
- 推薦系統(tǒng)之協(xié)同過(guò)濾算法
- 提高筒倉(cāng)滑模施工混凝土外觀質(zhì)量QC成果PPT
- 小學(xué)期末班級(jí)頒獎(jiǎng)典禮動(dòng)態(tài)課件PPT
評(píng)論
0/150
提交評(píng)論