版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年山東省德州市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C
3.二元函數(shù)z=x3-y3+3x2+3y2-9x的極小值點(diǎn)為()
A.(1,0)B.(1,2)C.(-3,0)D.(-3,2)
4.
5.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f'(-1)=0,當(dāng)x<-1時(shí),f'(x)<0;x>-1時(shí),f'(x)>0.則下列結(jié)論肯定正確的是().A.A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)6.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2
7.曲線y=x-3在點(diǎn)(1,1)處的切線斜率為()
A.-1B.-2C.-3D.-48.A.A.1B.2C.3D.49.設(shè)f'(x)=1+x,則f(x)等于().A.A.1
B.X+X2+C
C.x++C
D.2x+x2+C
10.剛體上A、B、C、D四點(diǎn)組成一個(gè)平行四邊形,如在其四個(gè)頂點(diǎn)作用四個(gè)力,此四個(gè)邊恰好組成封閉的力多邊形。則()
A.力系平衡
B.力系有合力
C.力系的合力偶矩等于平行四邊形ABCD的面積
D.力系的合力偶矩等于負(fù)的平行四邊形ABCD的面積的2倍
11.
12.
13.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
14.A.沒(méi)有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線
15.設(shè)z=x2+y2,dz=()。
A.2ex2+y2(xdx+ydy)
B.2ex2+y2(zdy+ydx)
C.ex2+y2(xdx+ydy)
D.2ex2+y2(dx2+dy2)
16.A.e2
B.e-2
C.1D.0
17.
18.圖示結(jié)構(gòu)中,F(xiàn)=10N,I為圓桿,直徑d=15mm,2為正方形截面桿,邊長(zhǎng)為a=20mm,α=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。
A.1桿受拉20kNB.2桿受壓17.3kNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
19.函數(shù)y=f(x)在(a,b)內(nèi)二階可導(dǎo),且f'(x)>0,f"(x)<0,則曲線y=f(x)在(a,b)內(nèi)().
A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸
20.
二、填空題(20題)21.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f'(0)=______.
22.
23.
24.
25.
26.27.28.
29.
30.31.設(shè)y=ln(x+2),貝y"=________。32.
33.過(guò)點(diǎn)M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為_(kāi)________.
34.
35.
36.37.38.39.方程cosxsinydx+sinxcosydy=0的通解為_(kāi)__________.40.三、計(jì)算題(20題)41.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.42.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
43.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
44.
45.
46.
47.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
48.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.49.
50.51.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則52.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.53.54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).55.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
56.
57.求微分方程的通解.58.求曲線在點(diǎn)(1,3)處的切線方程.59.證明:
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)61.62.求,其中D為y=x-4,y2=2x所圍成的區(qū)域。63.設(shè)y=x2+sinx,求y'.
64.
65.
66.求微分方程xy'-y=x2的通解.
67.求由曲線y=cos、x=0及y=0所圍第一象限部分圖形的面積A及該圖形繞x軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vx。
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.當(dāng)x→0時(shí),tan2x是()。
A.比sin3x高階的無(wú)窮小B.比sin3x低階的無(wú)窮小C.與sin3x同階的無(wú)窮小D.與sin3x等價(jià)的無(wú)窮小六、解答題(0題)72.
參考答案
1.A
2.C
3.A對(duì)于點(diǎn)(-3,0),A=-18+6=-12,B=0,C=6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).對(duì)于點(diǎn)(-3,2),A=-12,B=0,C=-12+6=-6,B2-AC=-72<0,故此點(diǎn)為極大值點(diǎn).對(duì)于點(diǎn)(1,0),A=12,B=0,C=6,B2-AC=-72<0,故此點(diǎn)為極小值點(diǎn).對(duì)于點(diǎn)(1,2),A=12=0,C=-6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).
4.B
5.C本題考查的知識(shí)點(diǎn)為極值的第一充分條件.
由f'(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí),f'(x)<0;當(dāng)x>-1時(shí),f'(x)>1,由極值的第一充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.
6.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
7.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(diǎn)(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(diǎn)(1,1)處的切線斜率為-3,故選C。
8.D
9.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì).
可知應(yīng)選C.
10.D
11.C解析:
12.A
13.A
14.D
15.A∵z=ex+y∴z"=ex2+y22x;zy"=ex2+y22y∴dz=ex2+y22xdx+ex2+y22ydy
16.A
17.A解析:
18.C
19.B解析:本題考查的知識(shí)點(diǎn)為利用一階導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.
由于在(a,b)內(nèi)f'(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,又由于f"(x)<0,可知曲線y=f(x)在(a,b)內(nèi)為凹,可知應(yīng)選B.
20.D21.0本題考查的知識(shí)點(diǎn)為極值的必要條件.
由于y=f(x)在點(diǎn)x=0可導(dǎo),且x=0為f(x)的極值點(diǎn),由極值的必要條件可知有f'(0)=0.
22.(1/3)ln3x+C
23.
24.
解析:
25.e26.0.
本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問(wèn)題.
通常求解的思路為:
27.0
28.
29.e
30.1
31.
32.
33.
34.3本題考查了冪級(jí)數(shù)的收斂半徑的知識(shí)點(diǎn).
所以收斂半徑R=3.
35.(sinx+cosx)exdx(sinx+cosx)exdx解析:
36.37.f(0).
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于f(0)=0,f(0)存在,因此
本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:
因?yàn)轭}設(shè)中只給出f(0)存在,并沒(méi)有給出f(x)(x≠0)存在,也沒(méi)有給出f(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.
38.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
39.sinx·siny=Csinx·siny=C本題考查了可分離變量微分方程的通解的知識(shí)點(diǎn).
由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=-0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.
40.
41.
42.
43.
44.
45.
則
46.
47.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%48.函數(shù)的定義域?yàn)?/p>
注意
49.由一階線性微分方程通解公式有
50.
51.由等價(jià)無(wú)窮小量的定義可知52.由二重積分物理意義知
53.
54.
列表:
說(shuō)明
55.
56.
57.58.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年餐飲配送行業(yè)食品安全責(zé)任合同3篇
- 二零二五版綜合安全解決方案與保安勞務(wù)合同2篇
- 二零二五版搬家服務(wù)與物流數(shù)據(jù)共享合同樣本3篇
- 二零二五版房地產(chǎn)代理銷(xiāo)售合同示范文本解讀3篇
- 二零二五年度水上樂(lè)園供水及排水系統(tǒng)承包合同2篇
- 二零二五版影視制作合同:規(guī)定電影制作的流程與投資分配3篇
- 二零二五年度食堂物流配送服務(wù)合同2篇
- 二零二五年特種車(chē)輛銷(xiāo)售與操作培訓(xùn)服務(wù)合同3篇
- 二零二五版體育場(chǎng)館承包經(jīng)營(yíng)合同模板2篇
- 二零二五版寶鋼職工社會(huì)保障配套合同3篇
- 2024年水利工程高級(jí)工程師理論考試題庫(kù)(濃縮400題)
- 淋巴瘤病理診斷基礎(chǔ)和進(jìn)展周小鴿
- 增強(qiáng)現(xiàn)實(shí)技術(shù)在藝術(shù)教育中的應(yīng)用
- TD/T 1060-2021 自然資源分等定級(jí)通則(正式版)
- 《創(chuàng)傷失血性休克中國(guó)急診專家共識(shí)(2023)》解讀
- 倉(cāng)庫(kù)智能化建設(shè)方案
- 海外市場(chǎng)開(kāi)拓計(jì)劃
- 供應(yīng)鏈組織架構(gòu)與職能設(shè)置
- 幼兒數(shù)學(xué)益智圖形連線題100題(含完整答案)
- 七上-動(dòng)點(diǎn)、動(dòng)角問(wèn)題12道好題-解析
- 2024年九省聯(lián)考新高考 數(shù)學(xué)試卷(含答案解析)
評(píng)論
0/150
提交評(píng)論