2022-2023學年江蘇省泰州市求實中學九年級數(shù)學第一學期期末檢測模擬試題含解析_第1頁
2022-2023學年江蘇省泰州市求實中學九年級數(shù)學第一學期期末檢測模擬試題含解析_第2頁
2022-2023學年江蘇省泰州市求實中學九年級數(shù)學第一學期期末檢測模擬試題含解析_第3頁
2022-2023學年江蘇省泰州市求實中學九年級數(shù)學第一學期期末檢測模擬試題含解析_第4頁
2022-2023學年江蘇省泰州市求實中學九年級數(shù)學第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.關(guān)于反比例函數(shù),下列說法錯誤的是()A.隨的增大而減小 B.圖象位于一、三象限C.圖象過點 D.圖象關(guān)于原點成中心對稱2.在同一平面直角坐標系中,函數(shù)與的圖象可能是()A. B.C. D.3.如圖,有一塊直角三角形余料ABC,∠BAC=90°,D是AC的中點,現(xiàn)從中切出一條矩形紙條DEFG,其中E,F在BC上,點G在AB上,若BF=4.5cm,CE=2cm,則紙條GD的長為()A.3cm B.cm C.cm D.cm4.如圖,點A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,則∠BOC等于()A.60° B.70° C.120° D.140°5.中國“一帶一路”戰(zhàn)略給沿線國家和地區(qū)帶來很大的經(jīng)濟效益,沿線某地區(qū)居民2016年人均年收入300美元,預計2018年人均年收入將達到950美元,設(shè)2016年到2018年該地區(qū)居民人均年收入平均增長率為x,可列方程為()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=9506.把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知,則球的半徑長是()A.2 B.2.5 C.3 D.47.如圖,四邊形ABCD內(nèi)接于⊙O,E為CD延長線上一點,若∠ADE=110°,則∠B=()A.80° B.100° C.110° D.120°8.如圖,A、B、C三點在正方形網(wǎng)格線的交點處,若將△ABC繞著點A逆時針旋轉(zhuǎn)得到△AC′B′,則tanB′的值為()A. B. C. D.9.如圖,矩形OABC的頂點A、C分別在x、y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過矩形OABC對角線的交點M,分別交AB、BC于點D、E.若四邊形ODBE的面積為9,則k的值為()A.2 B. C.3 D.10.如圖,在一幅長,寬的矩形風景畫的四周鑲一條金色紙邊,制成一幅矩形圖,如果要使整個掛圖的面積是,設(shè)金色紙邊的寬為,那么滿足的方程是()A. B.C. D.二、填空題(每小題3分,共24分)11.如圖,在平面直角坐標系中,,則經(jīng)過三點的圓弧所在圓的圓心的坐標為__________;點坐標為,連接,直線與的位置關(guān)系是___________.12.已知在中,,,,那么_____________.13.如圖,是⊙O上的點,若,則___________度.14.已知點P是正方形ABCD內(nèi)部一點,且△PAB是正三角形,則∠CPD=_____度.15.若關(guān)于x的方程為一元二次方程,則m=__________.16.如圖,半圓O的直徑AB=18,C為半圓O上一動點,∠CAB=а,點G為△ABC的重心.則GO的長為__________.17.從甲、乙、丙、丁4名三好學生中隨機抽取2名學生擔任升旗手,則抽取的2名學生是甲和乙的概率為

________.18.如果兩個相似三角形的相似比為1:4,那么它們的面積比為_____.三、解答題(共66分)19.(10分)為了解某小區(qū)居民使用共享單車次數(shù)的情況,某研究小組隨機采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)統(tǒng)計如下:使用次數(shù)05101520人數(shù)11431(1)這10位居民一周內(nèi)使用共享單車次數(shù)的中位數(shù)是次,眾數(shù)是次.(2)若小明同學把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是.(填“中位數(shù)”,“眾數(shù)”或“平均數(shù)”)(3)若該小區(qū)有2000名居民,試估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).20.(6分)如圖,△ABC的中線AD、BE、CF相交于點G,H、I分別是BG、CG的中點.(1)求證:四邊形EFHI是平行四邊形;(2)①當AD與BC滿足條件時,四邊形EFHI是矩形;②當AG與BC滿足條件時,四邊形EFHI是菱形.21.(6分)在一個不透明的盒子中,共有三顆白色和一顆黑色圍棋棋子,它們除了顏色之外沒有其他區(qū)別.隨機地從盒子中取出一顆棋子后,不放回再取出第二顆棋子,請用畫樹狀圖或列表的方法表示所有結(jié)果,并求出恰好取出“一白一黑”兩顆棋子的概率.22.(8分)如圖,在平行四邊形中,過點作,垂足為,連接,為上一點,且.(1)求證:.(2)若,,,求的長.23.(8分)如圖,雙曲線經(jīng)過點P(2,1),且與直線y=kx﹣4(k<0)有兩個不同的交點.(1)求m的值.(2)求k的取值范圍.24.(8分)某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為40米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為x米.(1)若苗圃園的面積為102平方米,求x;(2)若使這個苗圃園的面積最大,求出x和面積最大值.25.(10分)如圖,在平面直角坐標系中,直線l1與x軸交于點A,與y軸交于點B(0,4),OA=OB,點C(﹣3,n)在直線l1上.(1)求直線l1和直線OC的解析式;(2)點D是點A關(guān)于y軸的對稱點,將直線OC沿y軸向下平移,記為l2,若直線l2過點D,與直線l1交于點E,求△BDE的面積.26.(10分)解方程:x2﹣2x﹣5=1.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)反比例函數(shù)的性質(zhì)用排除法解答.【詳解】A、反比例函數(shù)解析式中k=2>0,則在同一個象限內(nèi),y隨x增大而減小,選項中沒有提到每個象限,故錯誤;B、2>0,圖象經(jīng)過一三象限,故正確;C、把x=-1代入函數(shù)解析式,求得y=-2,故正確;D、反比例函數(shù)圖象都是關(guān)于原點對稱的,故正確.故選:A.【點睛】本題考查了反比例函數(shù)的性質(zhì),解題的關(guān)鍵是要明確反比例函數(shù)的增減性必須要強調(diào)在同一個象限內(nèi).2、D【分析】分兩種情況討論,當k>0時,分析出一次函數(shù)和反比例函數(shù)所過象限;再分析出k<0時,一次函數(shù)和反比例函數(shù)所過象限,符合題意者即為正確答案.【詳解】當時,一次函數(shù)經(jīng)過一、二、三象限,反比例函數(shù)經(jīng)過一、三象限;當時,一次函數(shù)經(jīng)過一、二、四象限,反比例函數(shù)經(jīng)過二、四象限.觀察圖形可知,只有A選項符合題意.

故選:D.【點睛】本題主要考查了反比例函數(shù)的圖象和一次函數(shù)的圖象,熟悉兩函數(shù)中k和b的符號對函數(shù)圖象的影響是解題的關(guān)鍵.3、C【詳解】∵四邊形DEFG是矩形,∴GD∥EF,GD=EF,∵D是AC的中點,∴GD是△ABC的中位線,∴,∴,解得:GD=.故選D.4、D【解析】試題分析:如圖,連接OA,則∵OA=OB=OC,∴∠BAO=∠ABO=32°,∠CAO=∠ACO=38°.∴∠CAB=∠CAO+∠BAO=1.∵∠CAB和∠BOC上同弧所對的圓周角和圓心角,∴∠BOC=2∠CAB=2.故選D.5、D【解析】設(shè)2016年到2018年該地區(qū)居民年人均收入平均增長率為x,那么根據(jù)題意得2018年年收入為:300(1+x)2,列出方程為:300(1+x)2=1.故選D.6、B【解析】取EF的中點M,作MN⊥AD于點M,取MN上的球心O,連接OF,設(shè)OF=x,則OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的長即可.【詳解】如圖:EF的中點M,作MN⊥AD于點M,取MN上的球心O,連接OF,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴四邊形CDMN是矩形,∴MN=CD=4,設(shè)OF=x,則ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故選B.【點睛】本題主考查垂徑定理及勾股定理的知識,正確作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.7、C【分析】直接利用圓內(nèi)接四邊形的性質(zhì)分析得出答案.【詳解】∵四邊形ABCD內(nèi)接于⊙O,E為CD延長線上一點,∠ADE=110°,∴∠B=∠ADE=110°.故選:C.【點睛】本題考查圓內(nèi)接四邊形的性質(zhì).熟練掌握圓內(nèi)接四邊形的性質(zhì):圓內(nèi)接四邊形的對角互補;.圓內(nèi)接四邊形的外角等于它的內(nèi)對角是解題的關(guān)鍵.8、D【解析】過C點作CD⊥AB,垂足為D,根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B,把求tanB′的問題,轉(zhuǎn)化為在Rt△BCD中求tanB.【詳解】過C點作CD⊥AB,垂足為D.根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)后對應角相等;三角函數(shù)的定義及三角函數(shù)值的求法.9、C【分析】本題可從反比例函數(shù)圖象上的點E、M、D入手,分別找出△OCE、△OAD、?OABC的面積與|k|的關(guān)系,列出等式求出k值.【詳解】解:由題意得:E、M、D位于反比例函數(shù)圖象上,則,,過點M作MG⊥y軸于點G,作MN⊥x軸于點N,則S?ONMG=|k|,又∵M為矩形ABCO對角線的交點,則S矩形ABCO=4S?ONMG=4|k|,由于函數(shù)圖象在第一象限,∴k>0,則,∴k=1.故選:C.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,過雙曲線上的任意一點分別向兩條坐標軸作垂線,與坐標軸圍成的矩形面積就等于|k|.本知識點是中考的重要考點,同學們應高度關(guān)注.10、B【分析】根據(jù)矩形的面積=長×寬,我們可得出本題的等量關(guān)系應該是:(風景畫的長+2個紙邊的寬度)×(風景畫的寬+2個紙邊的寬度)=整個掛圖的面積,由此可得出方程.【詳解】依題意,設(shè)金色紙邊的寬為,則:

,

整理得出:.

故選:B.【點睛】本題主要考查了由實際問題抽象出一元二次方程,對于面積問題應熟記各種圖形的面積公式,然后根據(jù)題意列出方程是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、(2,0)相切【分析】由網(wǎng)格容易得出AB的垂直平分線和BC的垂直平分線,它們的交點即為點M,根據(jù)圖形即可得出點M的坐標;由于C在⊙M上,如果CD與⊙M相切,那么C點必為切點;因此可連接MC,證MC是否與CD垂直即可.可根據(jù)C、M、D三點坐標,分別表示出△CMD三邊的長,然后用勾股定理來判斷∠MCD是否為直角.【詳解】解:如圖,作線段AB,CD的垂直平分線交點即為M,由圖可知經(jīng)過A、B、C三點的圓弧所在圓的圓心M的坐標為(2,0).

連接MC,MD,

∵MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,∴MD2=MC2+CD2,∴∠MCD=90°,

又∵MC為半徑,

∴直線CD是⊙M的切線.故答案為:(2,0);相切.【點睛】本題考查的直線與圓的位置關(guān)系,圓的切線的判定等知識,在網(wǎng)格和坐標系中巧妙地與圓的幾何證明有機結(jié)合,較新穎.12、1【分析】根據(jù)三角函數(shù)的定義即可求解.【詳解】∵cotB=,

∴AC==3BC=1.

故答案是:1.【點睛】此題考查銳角三角函數(shù)的定義及運用,解題關(guān)鍵在于掌握在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊,余切為鄰邊比對邊.13、130°.【分析】在優(yōu)弧AB上取點D,連接AD,BD,根據(jù)圓周角定理先求出∠ADB的度數(shù),再利用圓內(nèi)接四邊形對角互補進行求解即可.【詳解】在優(yōu)弧AB上取點D,連接AD,BD,∵∠AOB=100°,∴∠ADB=∠AOB=50°,∴∠ACB=180°﹣∠ADB=130°.故答案為130°.【點睛】本題考查了圓周角定理,圓內(nèi)接四邊形對角互補的性質(zhì),正確添加輔助線,熟練應用相關(guān)知識是解題的關(guān)鍵.14、1【解析】如圖,先求出∠DAP=∠CBP=30°,由AP=AD=BP=BC,就可以求出∠PDC=∠PCD=15°,進而得出∠CPD的度數(shù).【詳解】解:如圖,∵四邊形ABCD是正方形,∴AD=AB=BC,∠DAB=∠ABC=90°,∵△ABP是等邊三角形,∴AP=BP=AB,∠PAB=∠PBA=60°,∴AP=AD=BP=BC,∠DAP=∠CBP=30°.∴∠BCP=∠BPC=∠APD=∠ADP=75°,∴∠PDC=∠PCD=15°,∴∠CPD=180°﹣∠PDC﹣∠PCD=180°﹣15°﹣15°=1°.故答案為1.【點睛】本題考查了正方形的性質(zhì)的運用,等邊三角形的性質(zhì)的運用,等腰三角形的性質(zhì)的運用,解答時運用三角形內(nèi)角和定理是關(guān)鍵.15、-1【分析】根據(jù)一元二次方程的定義:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫一元二次方程進行分析即可.【詳解】解:依題意得:|m|=1,且m-1≠0,

解得m=-1.

故答案為:-1.【點睛】本題考查了一元二次方程的定義,關(guān)鍵是掌握一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是1.16、3【分析】根據(jù)三角形重心的概念直接求解即可.【詳解】如圖,連接OC,∵AB為直徑,∴∠ACB=90,∵點O是直徑AB的中點,重心G在半徑OC,∴.故答案為:3.【點睛】本題考查了三角形重心的概念及性質(zhì)、直徑所對圓周角為直角、斜邊上的中線等于斜邊的一半,熟記并靈活運用三角形重心的性質(zhì)是解題的關(guān)鍵.17、?【分析】采用列舉法求概率.【詳解】解:隨機抽取的所有可能情況為:甲乙;甲丙;甲?。灰冶灰叶?;丙丁六種情況,則符合條件的只有一種情況,則P(抽取的2名學生是甲和乙)=1÷6=.故答案為:【點睛】本題考查概率的計算,題目比較簡單.18、1:1【解析】根據(jù)相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方即可解得.【詳解】∵兩個相似三角形的相似比為1:4,∴它們的面積比為1:1.故答案是:1:1.【點睛】考查對相似三角形性質(zhì)的理解.(1)相似三角形周長的比等于相似比;(2)相似三角形面積的比等于相似比的平方;(3)相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.三、解答題(共66分)19、(1)10,10;(2)中位數(shù)和眾數(shù);(3)22000【分析】(1)根據(jù)眾數(shù)、中位數(shù)和平均數(shù)的定義分別求解可得;

(2)由中位數(shù)和眾數(shù)不受極端值影響可得答案;

(3)用總?cè)藬?shù)乘以樣本中居民的平均使用次數(shù)即可得.【詳解】解:(1)這10位居民一周內(nèi)使用共享單車次數(shù)的中位數(shù)是:(次),根據(jù)使用次數(shù)可得:眾數(shù)為10次;(2)把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是中位數(shù)和眾數(shù),

故答案為:中位數(shù)和眾數(shù);(3)平均數(shù)為(次),(次)估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù)為22000次.【點睛】本題考查的是平均數(shù)、眾數(shù)、中位數(shù)的定義及其求法,牢記定義是關(guān)鍵.20、(1)證明見解析;(2)①AD⊥BC;②2AD=3BC【解析】(1)證出EF、HI分別是△ABC、△BCG的中位線,根據(jù)三角形中位線定理可得EF∥BC且EF=BC,HI∥BC且PQ=BC,進而可得EF∥HI且EF=HI.根據(jù)一組對邊平行且相等的四邊形是平行四邊形可得結(jié)論;(2)①由三角形中位線定理得出FH∥AD,再證出EF⊥FH即可;②與三角形重心定理得出AG=AD,證出AG=BC,由三角形中位線定理和添加條件得出FH=EF,即可得出結(jié)論.【詳解】(1)證明:∵BE,CF是△ABC的中線,∴EF是△ABC的中位線,∴EF∥BC且EF=BC.∵H、I分別是BG、CG的中點,∴HI是△BCG的中位線,∴HI∥BC且HI=BC,∴EF∥HI且EF=HI,∴四邊形EFHI是平行四邊形.(2)解:①當AD與BC滿足條件AD⊥BC時,四邊形EFHI是矩形;理由如下:同(1)得:FH是△ABG的中位線,∴FH∥AG,F(xiàn)H=AG,∴FH∥AD,∵EF∥BC,AD⊥BC,∴EF⊥FH,∴∠EFH=90°,∵四邊形EFHI是平行四邊形,∴四邊形EFHI是矩形;故答案為AD⊥BC;②當AD與BC滿足條件BC=AD時,四邊形EFHI是菱形;理由如下:∵△ABC的中線AD、BE、CF相交于點G,∴AG=AD,∵BC=AD,∴AG=BC,∵FH=AG,EF=BC,∴FH=EF,又∵四邊形EFHI是平行四邊形,∴四邊形EFHI是菱形;故答案為2AD=3BC.點睛:此題主要考查了三角形中位線定理,以及平行四邊形的判定與性質(zhì),關(guān)鍵是掌握三角形的中位線平行于第三邊,并且等于第三邊的一半.21、【分析】根據(jù)樹狀圖列舉所有等可能的結(jié)果與“一白一黑”的情況,再利用概率公式即可求解.【詳解】解:樹狀圖如下,由樹狀圖可知,共有12種結(jié)果,且每種結(jié)果出現(xiàn)的可能性是相同的,其中“一白一黑”有6種,所以恰好取出“一白一黑”兩顆棋子的概率為.【點睛】本題考查用列表法或樹狀圖求兩步事件概率問題,區(qū)分“放回”事件和“不放回”事件是解答此題的關(guān)鍵.22、(1)見解析;(2)【解析】(1)求三角形相似就要得出兩組對應的角相等,已知了∠BFE=∠C,根據(jù)等角的補角相等可得出∠ADE=∠AFB,根據(jù)AB∥CD可得出∠BAF=∠AED,這樣就構(gòu)成了兩三角形相似的條件.(2)根據(jù)(1)的相似三角形可得出關(guān)于AB,AE,AD,BF的比例關(guān)系,有了AD,AB的長,只需求出AE的長即可.可在直角三角形ABE中用勾股定理求出AE的長,這樣就能求出BF的長了.【詳解】(1)證明:在平行四邊形ABCD中,∵∠D+∠C=180°,AB∥CD,∴∠BAF=∠AED.∵∠AFB+∠BFE=180°,∠D+∠C=180°,∠BFE=∠C,∴∠AFB=∠D,∴△ABF∽△EAD.(2)解:∵BE⊥CD,AB∥CD,∴BE⊥AB.∴∠ABE=90°.∴.∵△ABF∽△EAD,,..【點睛】本題主要考查了相似三角形的判定和性質(zhì),平行四邊形的性質(zhì),等角的補角,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.23、(1)m=2;(2)k的取值范圍是﹣2<k<0.【解析】(1)將點P坐標代入,利用待定系數(shù)法求解即可;(2)由題意可得關(guān)于x的一元二次方程,根據(jù)有兩個不同的交點,可得△=(﹣4)2﹣4k?(﹣2)>0,求解即可.【詳解】(1)∵雙曲線經(jīng)過點P(2,1),∴m=2×1=2;(2)∵雙曲線與直線y=kx﹣4(k<0)有兩個不同的交點,∴,整理得:kx2﹣4x﹣2=0,∴△=(﹣4)2﹣4k?(﹣2)>0,∴k>﹣2,∴k的取值范圍是﹣2<k<0.【點睛】本題考查了反比例函數(shù)與一次函數(shù)綜合,涉及了待定系數(shù)法、一元二次方程根的判別式等,熟練掌握相關(guān)知識是解題的關(guān)鍵.24、(1)x=17;(2)當x=11米時,這個苗圃園的面積最大,最大值為198平方米.【分析】(1)根據(jù)題意列出方程,解出方程即可;(2)設(shè)苗圃園的面積為y平方米,用x表達出y,得到二次函數(shù)表達式,根據(jù)二次函數(shù)的性質(zhì),求出面積的最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論