2022年浙江省湖州市長興縣、德清縣、安吉縣三縣高三下學期第六次檢測數(shù)學試卷含解析_第1頁
2022年浙江省湖州市長興縣、德清縣、安吉縣三縣高三下學期第六次檢測數(shù)學試卷含解析_第2頁
2022年浙江省湖州市長興縣、德清縣、安吉縣三縣高三下學期第六次檢測數(shù)學試卷含解析_第3頁
2022年浙江省湖州市長興縣、德清縣、安吉縣三縣高三下學期第六次檢測數(shù)學試卷含解析_第4頁
2022年浙江省湖州市長興縣、德清縣、安吉縣三縣高三下學期第六次檢測數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.2.已知,若則實數(shù)的取值范圍是()A. B. C. D.3.函數(shù)的圖象大致是()A. B.C. D.4.已知,則的大小關系為()A. B. C. D.5.已知雙曲線的一個焦點為,點是的一條漸近線上關于原點對稱的兩點,以為直徑的圓過且交的左支于兩點,若,的面積為8,則的漸近線方程為()A. B.C. D.6.在平面直角坐標系中,銳角頂點在坐標原點,始邊為x軸正半軸,終邊與單位圓交于點,則()A. B. C. D.7.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.8.若雙曲線的一條漸近線與圓至多有一個交點,則雙曲線的離心率的取值范圍是()A. B. C. D.9.設,隨機變量的分布列是01則當在內增大時,()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大10.設數(shù)列是等差數(shù)列,,.則這個數(shù)列的前7項和等于()A.12 B.21 C.24 D.3611.已知函數(shù),若不等式對任意的恒成立,則實數(shù)k的取值范圍是()A. B. C. D.12.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知無蓋的圓柱形桶的容積是立方米,用來做桶底和側面的材料每平方米的價格分別為30元和20元,那么圓桶造價最低為________元.14.已知(為虛數(shù)單位),則復數(shù)________.15.甲、乙兩人同時參加公務員考試,甲筆試、面試通過的概率分別為和;乙筆試、面試通過的概率分別為和.若筆試面試都通過才被錄取,且甲、乙錄取與否相互獨立,則該次考試只有一人被錄取的概率是__________.16.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結果為的式子的序號是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣,求矩陣的特征值及其相應的特征向量.18.(12分)設直線與拋物線交于兩點,與橢圓交于兩點,設直線(為坐標原點)的斜率分別為,若.(1)證明:直線過定點,并求出該定點的坐標;(2)是否存在常數(shù),滿足?并說明理由.19.(12分)心形線是由一個圓上的一個定點,當該圓在繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名,在極坐標系中,方程()表示的曲線就是一條心形線,如圖,以極軸所在的直線為軸,極點為坐標原點的直角坐標系中.已知曲線的參數(shù)方程為(為參數(shù)).(1)求曲線的極坐標方程;(2)若曲線與相交于、、三點,求線段的長.20.(12分)某地為改善旅游環(huán)境進行景點改造.如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計寬度),l1和l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點,拋物線的對稱軸垂直于l3,且交l3于M

),在堤岸線l3上的E,F(xiàn)兩處建造建筑物,其中E,F(xiàn)到M的距離為1

(百米),且F恰在B的正對岸(即BF⊥l3).(1)在圖②中建立適當?shù)钠矫嬷苯亲鴺讼担⑶髼5繟B的方程;(2)游客(視為點P)在棧道AB的何處時,觀測EF的視角(∠EPF)最大?請在(1)的坐標系中,寫出觀測點P的坐標.21.(12分)某單位準備購買三臺設備,型號分別為已知這三臺設備均使用同一種易耗品,提供設備的商家規(guī)定:可以在購買設備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設備時應購買的易耗品的件數(shù).該單位調查了這三種型號的設備各60臺,調査每臺設備在一個月中使用的易耗品的件數(shù),并得到統(tǒng)計表如下所示.每臺設備一個月中使用的易耗品的件數(shù)678型號A30300頻數(shù)型號B203010型號C04515將調查的每種型號的設備的頻率視為概率,各臺設備在易耗品的使用上相互獨立.(1)求該單位一個月中三臺設備使用的易耗品總數(shù)超過21件的概率;(2)以該單位一個月購買易耗品所需總費用的期望值為決策依據(jù),該單位在購買設備時應同時購買20件還是21件易耗品?22.(10分)已知半徑為5的圓的圓心在x軸上,圓心的橫坐標是整數(shù),且與直線4x+3y﹣29=0相切.(1)求圓的方程;(2)設直線ax﹣y+5=0(a>0)與圓相交于A,B兩點,求實數(shù)a的取值范圍;(3)在(2)的條件下,是否存在實數(shù)a,使得弦AB的垂直平分線l過點P(﹣2,4),若存在,求出實數(shù)a的值;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.2.C【解析】

根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【點睛】本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,3.A【解析】

根據(jù)復合函數(shù)的單調性,同增異減以及采用排除法,可得結果.【詳解】當時,,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當時,若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數(shù)的大致圖象的判斷,關鍵在于對復合函數(shù)單調性的理解,記住常用的結論:增+增=增,增-減=增,減+減=減,復合函數(shù)單調性同增異減,屬中檔題.4.A【解析】

根據(jù)指數(shù)函數(shù)的單調性,可得,再利用對數(shù)函數(shù)的單調性,將與對比,即可求出結論.【詳解】由題知,,則.故選:A.【點睛】本題考查利用函數(shù)性質比較大小,注意與特殊數(shù)的對比,屬于基礎題..5.B【解析】

由雙曲線的對稱性可得即,又,從而可得的漸近線方程.【詳解】設雙曲線的另一個焦點為,由雙曲線的對稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B【點睛】本題考查雙曲線的簡單幾何性質,考查直線與圓的位置關系,考查數(shù)形結合思想與計算能力,屬于中檔題.6.A【解析】

根據(jù)單位圓以及角度范圍,可得,然后根據(jù)三角函數(shù)定義,可得,最后根據(jù)兩角和的正弦公式,二倍角公式,簡單計算,可得結果.【詳解】由題可知:,又為銳角所以,根據(jù)三角函數(shù)的定義:所以由所以故選:A【點睛】本題考查三角函數(shù)的定義以及兩角和正弦公式,還考查二倍角的正弦、余弦公式,難點在于公式的計算,識記公式,簡單計算,屬基礎題.7.D【解析】

設非零向量與的夾角為,在等式兩邊平方,求出的值,進而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點睛】本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算能力,屬于基礎題.8.C【解析】

求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點睛】本題考查雙曲線的離心率的范圍,注意運用圓心到漸近線的距離不小于半徑,考查化簡整理的運算能力,屬于中檔題.9.C【解析】

,,判斷其在內的單調性即可.【詳解】解:根據(jù)題意在內遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調遞減,故選:C.【點睛】本題考查了利用隨機變量的分布列求隨機變量的期望與方差,屬于中檔題.10.B【解析】

根據(jù)等差數(shù)列的性質可得,由等差數(shù)列求和公式可得結果.【詳解】因為數(shù)列是等差數(shù)列,,所以,即,又,所以,,故故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,性質,等差數(shù)列的和,屬于中檔題.11.A【解析】

先求出函數(shù)在處的切線方程,在同一直角坐標系內畫出函數(shù)和的圖象,利用數(shù)形結合進行求解即可.【詳解】當時,,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點坐標為.在同一直角坐標系內畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結合思想可知:不等式對任意的恒成立,則實數(shù)k的取值范圍是.故選:A【點睛】本題考查了利用數(shù)形結合思想解決不等式恒成立問題,考查了導數(shù)的應用,屬于中檔題.12.B【解析】

根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質、拋物線的幾何性質,考查了學生的計算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設桶的底面半徑為,用表示出桶的總造價,利用基本不等式得出最小值.【詳解】設桶的底面半徑為,高為,則,故,圓通的造價為解法一:當且僅當,即時取等號.解法二:,則,令,即,解得,此函數(shù)在單調遞增;令,即,解得,此函數(shù)在上單調遞減;令,即,解得,即當時,圓桶的造價最低.所以故答案為:【點睛】本題考查了基本不等式的應用,注意驗證等號成立的條件,屬于基礎題.14.【解析】

解:故答案為:【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,屬于基礎題.15.【解析】

分別求得甲、乙被錄取的概率,根據(jù)獨立事件概率公式可求得結果.【詳解】甲被錄取的概率;乙被錄取的概率;只有一人被錄取的概率.故答案為:.【點睛】本題考查獨立事件概率的求解問題,屬于基礎題.16.①②③【解析】

由已知分別結合和差角的正切及正弦余弦公式進行化簡即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應用,屬于中檔試題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.矩陣屬于特征值的一個特征向量為,矩陣屬于特征值的一個特征向量為【解析】

先由矩陣特征值的定義列出特征多項式,令解方程可得特征值,再由特征值列出方程組,即可求得相應的特征向量.【詳解】由題意,矩陣的特征多項式為,令,解得,,將代入二元一次方程組,解得,所以矩陣屬于特征值的一個特征向量為;同理,矩陣屬于特征值的一個特征向量為v【點睛】本題主要考查了矩陣的特征值與特征向量的計算,其中解答中熟記矩陣的特征值和特征向量的計算方法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.18.(1)證明見解析(0,2);(2)存在,理由見解析【解析】

(1)設直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(2)由斜率公式分別求出,,聯(lián)立直線與拋物線,橢圓,再由根與系數(shù)的關系得,,,代入,,化簡即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過原點,故設由可得,.,,故所以直線l的方程為故直線l恒過定點.(2)由(1)知設由可得,,即存在常數(shù)滿足題意.【點睛】本題主要考查了直線與拋物線、橢圓的位置關系,直線過定點問題,考查學生分析解決問題的能力,屬于中檔題.19.(1)();(2).【解析】

(1)化簡得到直線方程為,再利用極坐標公式計算得到答案.(2)聯(lián)立方程計算得到,,計算得到答案.【詳解】(1)由消得,即,是過原點且傾斜角為的直線,∴的極坐標方程為().(2)由得,∴,由得∴,∴.【點睛】本題考查了參數(shù)方程,極坐標方程,意在考查學生的計算能力和應用能力.20.(1)見解析,,x[0,1];(2)P(,)時,視角∠EPF最大.【解析】

(1)以A為原點,l1為x軸,拋物線的對稱軸為y軸建系,設出方程,通過點的坐標可求方程;(2)設出的坐標,表示出,利用基本不等式求解的最大值,從而可得觀測點P的坐標.【詳解】(1)以A為原點,l1為x軸,拋物線的對稱軸為y軸建系由題意知:B(1,0.5),設拋物線方程為代入點B得:p=1,故方程為,x[0,1];(2)設P(,),t[0,],作PQ⊥l3于Q,記∠EPQ=,∠FPQ=,,令,,則:,當且僅當即,即,即時取等號;故P(,)時視角∠EPF最大,答:P(,)時,視角∠EPF最大.【點睛】本題主要考查圓錐曲線的實際應用,理解題意,構建合適的模型是求解的關鍵,涉及最值問題一般利用基本不等式或者導數(shù)來進行求解,側重考查數(shù)學運算的核心素養(yǎng).21.(1)(2)應該購買21件易耗品【解析】

(1)由統(tǒng)計表中數(shù)據(jù)可得型號分別為在一個月使用易耗品的件數(shù)為6,7,8時的概率,設該單位三臺設備一個月中使用易耗品的件數(shù)總數(shù)為X,則,利用獨立事件概率公式進而求解即可;(2)由題可得X所有可能的取值為,即可求得對應的概率,再分別討論該單位在購買設備時應同時購買20件易耗品和21件易耗品時總費用的可能取值及期望,即可分析求解.【詳解】(1)由題中的表格可知A型號的設備一個月使用易耗品的件數(shù)為6和7的頻率均為;B型號的設備一個月使用易耗品的件數(shù)為6,7,8的頻率分別為;C型號的設備一個月使用易耗品的件數(shù)為7和8的頻率分別為;設該單位一個月中三臺設備使用易耗品的件數(shù)分別為,則,,,設該單位三臺設備一個月中使用易耗品的件數(shù)總數(shù)為X,則而,,故,即該單位一個月中三臺設備使用的易耗品總數(shù)超過21件的概率為.(2)以題意知,X所有可能的取值為;;;由(1)知,,若該單位在購買設備的同時購買了20件易耗品,設該

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論