數(shù)列的概念【新教材】2022年人教A版高中數(shù)學(xué)選擇性必修專題訓(xùn)練(Word含答案)_第1頁
數(shù)列的概念【新教材】2022年人教A版高中數(shù)學(xué)選擇性必修專題訓(xùn)練(Word含答案)_第2頁
數(shù)列的概念【新教材】2022年人教A版高中數(shù)學(xué)選擇性必修專題訓(xùn)練(Word含答案)_第3頁
數(shù)列的概念【新教材】2022年人教A版高中數(shù)學(xué)選擇性必修專題訓(xùn)練(Word含答案)_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

高一數(shù)學(xué)人教版(2019)選擇性必修第二冊

【數(shù)列的概念專題訓(xùn)練】

【基礎(chǔ)鞏固】

1.已知點(diǎn)(n,an)在函數(shù)y=9?2x的圖象上,則數(shù)列{anA.

-14

B.

-16

C.

14

D.

162.下列說法正確的是(

)A.

數(shù)列1,3,5,7可以表示為{1,3,5,7}

B.

數(shù)列-2,-1,0,1,2與數(shù)列2,1,0,-1,-2是相同的數(shù)列

C.

數(shù)列若用圖象表示,從圖象看都是一群孤立的點(diǎn)

D.

數(shù)列的項(xiàng)數(shù)一定是無限的3.下列數(shù)列中,既是無窮數(shù)列又是遞增數(shù)列的是(

)A.

1,13,132,14.已知數(shù)列{an}的通項(xiàng)an=2020?2A.

15

B.

17

C.

19

D.

215.已知數(shù)列{an}是公差不為零的等差數(shù)列,{bnA.

a4=b4

B.

a5<6.設(shè){an}是等比數(shù)列,則“a1<a2<a3”是數(shù)列{an}是遞增數(shù)列的A.

充分而不必要條件

B.

必要而不充分條件、

C.

充分必要條件

D.

既不充分也不必要條件7.已知數(shù)列{an}中,a1=12,a①an+1<1516;②2aA.

①③正確

B.

①④正確

C.

②③正確

D.

②④正確8.若等差數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)a1>0,a2020A.

4039

B.

4040

C.

4041

D.

40429.已知數(shù)列{an}的通項(xiàng)公式為aA.

第5項(xiàng)

B.

第6項(xiàng)

C.

第7項(xiàng)

D.

非任何一項(xiàng)10.已知數(shù)列{an}是首項(xiàng)為a,公差為1的等差數(shù)列,數(shù)列{bn}滿足bnA.

[?6,?5]

B.

(?6,?5)

C.

[?5,?4]

D.

(?5,?4)

【培優(yōu)提升】

11.已知正數(shù)數(shù)列{an}滿足(n+1)an+1=na12.等比數(shù)列{an}中,a1?a3=3,前n項(xiàng)和為Sn13.現(xiàn)有200根相同的鋼管,把它們堆成正三角形垛,要使剩余的鋼管數(shù)最少,那么剩余鋼管的根數(shù)為________.14.已知數(shù)列{an}滿足a1=12,an+1=15.已知正項(xiàng)數(shù)列{an}、{bn},記數(shù)列{an}(1)求數(shù)列{an}(2)求數(shù)列{2anb16.

(1)已知等比數(shù)列{an}滿足a1=(2)已知等比數(shù)列{an}為遞增數(shù)列.若a1>0,且2(17.已知正項(xiàng)數(shù)列{an}(1)求證:數(shù)列{a(2)若數(shù)列{bn}滿足bn=an?4018.已知數(shù)列{an}滿足a(1)證明:數(shù)列{1(2)求數(shù)列{a

【參考答案】

1.【答案】D2.【答案】C3.【答案】C4.【答案】D5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】C10.【答案】D11.【答案】[2?312.【答案】413.【答案】1014.【答案】(?∞,32)

15.【答案】(1)解:由題意知:2S1∵2S∴3a又∵(b∴nbn=(n+1)

(2)解:∵2a∴Tn13∴23=2∴Tn16.【答案】(1)解:設(shè)等比數(shù)列{an}由a3a5解得a4=2,∴q3=a

(2)解:由2(a4+易知a4≠0,所以2+2q解得q=2或q=1因?yàn)榈缺葦?shù)列{an}為遞增數(shù)列,且a1>017.【答案】(1)證明:由已知有:an2?(2n?1)所以由an=2n,an+1?an=2(n+1)?2n=2所以數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論