2023屆內(nèi)蒙古自治區(qū)滿洲里市九年級數(shù)學第一學期期末檢測試題含解析_第1頁
2023屆內(nèi)蒙古自治區(qū)滿洲里市九年級數(shù)學第一學期期末檢測試題含解析_第2頁
2023屆內(nèi)蒙古自治區(qū)滿洲里市九年級數(shù)學第一學期期末檢測試題含解析_第3頁
2023屆內(nèi)蒙古自治區(qū)滿洲里市九年級數(shù)學第一學期期末檢測試題含解析_第4頁
2023屆內(nèi)蒙古自治區(qū)滿洲里市九年級數(shù)學第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.在同一平面直角坐標系中,反比例函數(shù)y(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是()A. B.C. D.2.如圖,將矩形沿對角線折疊,使落在處,交于,則下列結(jié)論不一定成立的是()A. B.C. D.3.如圖,AB是⊙O的弦,OD⊥AB于D交⊙O于E,則下列說法錯誤的是()A.AD=BD B.∠ACB=∠AOE C.弧AE=弧BE D.OD=DE4.將二次函數(shù)化成頂點式,變形正確的是:()A. B. C. D.5.如圖1,在Rt△ABC中,∠B=90°,∠ACB=45°,延長BC到D,使CD=AC,則tan22.5°=()A. B. C. D.6.一個幾何體是由若干個相同的正方體組成的,其主視圖和左視圖如圖所示,則這個幾何體最多可由多少個這樣的正方體組成()A. B. C. D.7.三角形在正方形網(wǎng)格紙中的位置如圖所示,則的值是()A. B. C. D.8.如圖,⊙O是正△ABC的外接圓,點D是弧AC上一點,則∠BDC的度數(shù)().A.50° B.60° C.100° D.120°9.若將拋物線y=x2向右平移2個單位,再向上平移3個單位,則所得拋物線的表達式為()A. B. C. D.10.將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經(jīng)過點,將繞點順時針方向旋轉(zhuǎn)(),交于點,交于點,則的值為()A. B. C. D.二、填空題(每小題3分,共24分)11.已知拋物線y=ax2+bx+c開口向上,一條平行于x軸的直線截此拋物線于M、N兩點,那么線段MN的長度隨直線向上平移而變_____.(填“大”或“小”)12.如圖,為的弦,的半徑為5,于點,交于點,且,則弦的長是_____.13.圓內(nèi)接正六邊形的邊長為6,則該正六邊形的邊心距為_____.14.如圖,在半徑為2的⊙O中,弦AB⊥直徑CD,垂足為E,∠ACD=30°,點P為⊙O上一動點,CF⊥AP于點F.①弦AB的長度為_____;②點P在⊙O上運動的過程中,線段OF長度的最小值為_____.15.已知一元二次方程2x2﹣5x+1=0的兩根為m,n,則m2+n2=_____.16.如圖,在中,,,,將繞點逆時針旋轉(zhuǎn)得到,連接,則的長為__________.17.方程和方程同解,________.18.若△ABC∽△A′B′C′,相似比為1:3,則△ABC與△A′B′C′的面積之比為_____.三、解答題(共66分)19.(10分)某中學現(xiàn)要從甲、乙兩位男生和丙、丁兩位女生中,選派兩位同學代表學校參加全市漢字聽寫大賽.(1)請用樹狀圖或列表法列舉出各種可能選派的結(jié)果;(2)求恰好選派一男一女兩位同學參賽的概率.20.(6分)如圖,矩形ABCD中,AD=5,AB=7,點E為DC上一個動點,把△ADE沿AE折疊,當點D的對應(yīng)點D'落在∠ABC的角平分線上時,DE的長為____.21.(6分)作出函數(shù)y=2x2的圖象,并根據(jù)圖象回答下列問題:(1)列表:x……y……(2)在下面給出的正方形網(wǎng)格中建立適當?shù)钠矫嬷苯亲鴺讼?,描出列表中的各點,并畫出函數(shù)y=2x2的圖象:(3)觀察所畫函數(shù)的圖象,當﹣1<x<2時,y的取值范圍是(直接寫出結(jié)論).22.(8分)如圖,在梯形ABCD中,AD//BC,AC與BD相交于點O,點E在線段OB上,AE的延長線與BC相交于點F,OD2=OB·OE.(1)求證:四邊形AFCD是平行四邊形;(2)如果BC=BD,AE·AF=AD·BF,求證:△ABE∽△ACD.23.(8分)圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.(1)如圖1,連接DE,BG,M為線段BG的中點,連接AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論;(2)在圖1的基礎(chǔ)上,將正方形AEFG繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點,連結(jié)AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.24.(8分)某校為了深入學習社會主義核心價值觀,對本校學生進行了一次相關(guān)知識的測試,隨機抽取了部分學生的測試成績進行統(tǒng)計(根據(jù)成績分為、、、、五個組,表示測試成績,組:;組:;組:;組:;組:),通過對測試成績的分析,得到如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題:(1)抽取的學生共有______人,請將兩幅統(tǒng)計圖補充完整;(2)抽取的測試成績的中位數(shù)落在______組內(nèi);(3)本次測試成績在80分以上(含80分)為優(yōu)秀,若該校初三學生共有1200人,請估計該校初三測試成績?yōu)閮?yōu)秀的學生有多少人?25.(10分)如圖,梯形ABCD中,,點在上,連與的延長線交于點G.(1)求證:;(2)當點F是BC的中點時,過F作交于點,若,求的長.26.(10分)如圖,在正方形ABCD中,點E在邊CD上(不與點C,D重合),連接AE,BD交于點F.(1)若點E為CD中點,AB=2,求AF的長.(2)若∠AFB=2,求的值.(3)若點G在線段BF上,且GF=2BG,連接AG,CG,設(shè)=x,四邊形AGCE的面積為,ABG的面積為,求的最大值.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】直接利用二次函數(shù)圖象經(jīng)過的象限得出a,b的值取值范圍,進而利用反比例函數(shù)的性質(zhì)得出答案.【詳解】A、拋物線y=ax2+bx開口方向向上,則a>1,對稱軸位于軸的右側(cè),則a,b異號,即b<1.所以反比例函數(shù)y的圖象位于第二、四象限,故本選項錯誤;B、拋物線y=ax2+bx開口方向向上,則a>1,對稱軸位于軸的左側(cè),則a,b同號,即b>1.所以反比例函數(shù)y的圖象位于第一、三象限,故本選項錯誤;C、拋物線y=ax2+bx開口方向向下,則a<1,對稱軸位于軸的右側(cè),則a,b異號,即b>1.所以反比例函數(shù)y的圖象位于第一、三象限,故本選項錯誤;D、拋物線y=ax2+bx開口方向向下,則a<1,對稱軸位于軸的右側(cè),則a,b異號,即b>1.所以反比例函數(shù)y的圖象位于第一、三象限,故本選項正確;故選D.【點睛】本題考查了反比例函數(shù)的圖象以及二次函數(shù)的圖象,要熟練掌握二次函數(shù),反比例函數(shù)中系數(shù)與圖象位置之間關(guān)系.2、C【解析】分析:主要根據(jù)折疊前后角和邊相等對各選項進行判斷,即可選出正確答案.詳解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正確.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正確.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故選C.點睛:本題可以采用排除法,證明A,B,D都正確,所以不正確的就是C,排除法也是數(shù)學中一種常用的解題方法.3、D【解析】由垂徑定理和圓周角定理可證,AD=BD,AD=BD,AE=BE,而點D不一定是OE的中點,故D錯誤.【詳解】∵OD⊥AB,∴由垂徑定理知,點D是AB的中點,有AD=BD,=,∴△AOB是等腰三角形,OD是∠AOB的平分線,有∠AOE=12∠AOB,由圓周角定理知,∠C=12∠AOB,∴∠ACB=∠AOE,故A、B、C正確,而點D不一定是OE的中點,故錯誤.故選D.【點睛】本題主要考查圓周角定理和垂徑定理,熟練掌握這兩個定理是解答此題的關(guān)鍵.4、A【分析】將化為頂點式,再進行判斷即可.【詳解】故答案為:A.【點睛】本題考查了一元二次方程的問題,掌握一元二次方程的頂點式表示形式是解題的關(guān)鍵.5、B【解析】設(shè)AB=x,求出BC=x,CD=AC=x,求出BD為(x+x),通過∠ACB=45°,CD=AC,可以知道∠D即為22.5°,再解直角三角形求出tanD即可.【詳解】解:設(shè)AB=x,

∵在Rt△ABC中,∠B=90°,∠ACB=45°,

∴∠BAC=∠ACB=45°,

∴AB=BC=x,

由勾股定理得:AC==x,∴AC=CD=x∴BD=BC+CD=x+x,

∴tan22.5°=tanD==故選B.【點睛】本題考查了解直角三角形、勾股定理、等腰三角形的性質(zhì)和判定等知識點,設(shè)出AB=x能求出BD=x+x是解此題的關(guān)鍵.6、B【分析】易得此幾何體有三行,三列,判斷出各行各列最多有幾個正方體組成即可.【詳解】解:綜合主視圖與左視圖分析可知,第一行第1列最多有2個,第一行第2列最多有1個,第一行第3列最多有2個;第二行第1列最多有1個,第二行第2列最多有1個,第二行第3列最多有1個;第三行第1列最多有2個,第三行第2列最多有1個,第三行第3列最多有2個;所以最多有:2+1+2+1+1+1+2+1+2=13(個),故選B.【點睛】本題考查了幾何體三視圖,重點是考查學生的空間想象能力.掌握以下知識點:主視圖反映長和高,左視圖反映寬和高,俯視圖反映長和寬.7、A【分析】根據(jù)圖形找到對邊和斜邊即可解題.【詳解】解:由網(wǎng)格紙可知,故選A.【點睛】本題考查了三角函數(shù)的實際應(yīng)用,屬于簡單題,熟悉三角函數(shù)的概念是解題關(guān)鍵.8、B【分析】根據(jù)等邊三角形的性質(zhì)和圓周角定理的推論解答即可.【詳解】解:∵△ABC是正三角形,∴∠A=60°,∴∠BDC=∠A=60°.故選:B.【點睛】本題考查了等邊三角形的性質(zhì)和圓周角定理的推論,屬于基礎(chǔ)題型,熟練掌握上述基本知識是解題的關(guān)鍵.9、B【解析】試題分析:∵函數(shù)y=x2的圖象的頂點坐標為,將函數(shù)y=x2的圖象向右平移2個單位,再向上平移3個單位,∴其頂點也向右平移2個單位,再向上平移3個單位.根據(jù)根據(jù)坐標的平移變化的規(guī)律,左右平移只改變點的橫坐標,左減右加.上下平移只改變點的縱坐標,下減上加.∴平移后,新圖象的頂點坐標是.∴所得拋物線的表達式為.故選B.考點:二次函數(shù)圖象與平移變換.10、C【解析】先根據(jù)直角三角形斜邊上的中線性質(zhì)得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【詳解】∵點D為斜邊AB的中點,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點D順時針方向旋轉(zhuǎn)α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了相似三角形的判定與性質(zhì).二、填空題(每小題3分,共24分)11、大【解析】因為二次函數(shù)的開口向上,所以點M,N向上平移時,距離對稱軸的距離越大,即MN的長度隨直線向上平移而變大,故答案為:大.12、1【分析】連接AO,得到直角三角形,再求出OD的長,就可以利用勾股定理求解.【詳解】連接,∵半徑是5,,∴,根據(jù)勾股定理,,∴,因此弦的長是1.【點睛】解答此題不僅要用到垂徑定理,還要作出輔助線AO,這是解題的關(guān)鍵.13、3【分析】根據(jù)題意畫出圖形,利用等邊三角形的性質(zhì)及銳角三角函數(shù)的定義直接計算即可.【詳解】如圖所示,連接OB、OC,過O作OG⊥BC于G.∵此多邊形是正六邊形,∴△OBC是等邊三角形,∴∠OBG=60°,∴邊心距OG=OB?sin∠OBG=6(cm).故答案為:.【點睛】本題考查了正多邊形與圓、銳角三角函數(shù)的定義及特殊角的三角函數(shù)值,熟知正六邊形的性質(zhì)是解答本題的關(guān)鍵.14、2.-1【分析】①在Rt△AOE中,解直角三角形求出AE即可解決問題.②取AC的中點H,連接OH,OF,HF,求出OH,F(xiàn)H,根據(jù)OF≥FH-OH,即,由此即可解決問題.【詳解】解:①如圖,連接OA.∵OA=OC=2,∴∠OCA=∠OAC=30°,∴∠AOE=∠OAC+∠ACO=60°,∴AE=OA?sin60°=,∵OE⊥AB,∴AE=EB=,∴AB=2AE=2,故答案為2.②取AC的中點H,連接OH,OF,HF,∵OA=OC,AH=HC,∴OH⊥AC,∴∠AHO=90°,∵∠COH=30°,∴OH=OC=1,HC=,AC=2,∵CF⊥AP,∴∠AFC=90°,∴HF=AC=,∴OF≥FH﹣OH,即OF≤﹣1,∴OF的最小值為﹣1.故答案為﹣1.【點睛】本題考查軌跡,圓周角定理,解直角三角形等知識,解題的關(guān)鍵是靈活運用所學知識解決問題.15、【分析】先由根與系數(shù)的關(guān)系得:兩根和與兩根積,再將m2+n2進行變形,化成和或積的形式,代入即可.【詳解】由根與系數(shù)的關(guān)系得:m+n=,mn=,∴m2+n2=(m+n)2-2mn=()2-2×=,故答案為.【點睛】本題考查了利用根與系數(shù)的關(guān)系求代數(shù)式的值,先將一元二次方程化為一般形式,寫出兩根的和與積的值,再將所求式子進行變形;如、x12+x22等等,本題是??碱}型,利用完全平方公式進行轉(zhuǎn)化.16、1【分析】由旋轉(zhuǎn)的性質(zhì)可得AC=AC1=3,∠CAC1=60°,由勾股定理可求解.【詳解】∵將△ABC繞點A逆時針旋轉(zhuǎn)60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===1,故答案為:1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,熟練旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.17、【解析】分別求解兩個方程的根即可.【詳解】解:,解得x=3或m;,解得x=3或-1,則m=-1,故答案為:-1.【點睛】本題考查了運用因式分解法解一元二次方程.18、1:1.【解析】試題分析:∵△ABC∽△A′B′C′,相似比為1:3,∴△ABC與△A′B′C′的面積之比為1:1.考點:相似三角形的性質(zhì).三、解答題(共66分)19、(1)見解析;(2)【解析】(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果;(2)由(1)可求得恰好選派一男一女兩位同學參賽的有8種情況,然后利用概率公式求解即可求得答案.【詳解】(1)畫樹狀圖得:(2)∵恰好選派一男一女兩位同學參賽的有8種情況,∴恰好選派一男一女兩位同學參賽的概率為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、或.【分析】連接BD′,過D′作MN⊥AB,交AB于點M,CD于點N,作D′P⊥BC交BC于點P,先利用勾股定理求出MD′,再分兩種情況利用勾股定理求出DE.【詳解】解:如圖,連接BD′,過D′作MN⊥AB,交AB于點M,CD于點N,作D′P⊥BC交BC于點P∵點D的對應(yīng)點D′落在∠ABC的角平分線上,∴MD′=PD′,設(shè)MD′=x,則PD′=BM=x,∴AM=AB-BM=7-x,又折疊圖形可得AD=AD′=5,∴x2+(7-x)2=25,解得x=3或1,即MD′=3或1.在Rt△END′中,設(shè)ED′=a,①當MD′=3時,AM=7-3=1,D′N=5-3=2,EN=1-a,∴a2=22+(1-a)2,解得a=,即DE=,②當MD′=1時,AM=7-1=3,D′N=5-1=1,EN=3-a,∴a2=12+(3-a)2,解得a=,即DE=.故答案為:或.【點睛】本題主要考查了折疊問題,解題的關(guān)鍵是明確掌握折疊以后有哪些線段是對應(yīng)相等的.21、(1)見解析;(2)見解析;(3)【分析】(1)根據(jù)函數(shù)的解析式,取x,y的值,即可.(2)描點、連線,畫出的函數(shù)圖象即可;(3)結(jié)合函數(shù)圖象即可求解.【詳解】(1)列表:x…﹣2﹣1012…y…82028…(2)畫出函數(shù)y=2x2的圖象如圖:(3)觀察所畫函數(shù)的圖象,當﹣1<x<2時,y的取值范圍是,故答案為:.22、(1)證明見解析;(2)證明見解析【分析】(1)由題意,得到,然后由AD∥BC,得到,則,即可得到AF//CD,即可得到結(jié)論;(2)先證明∠AED=∠BCD,得到∠AEB=∠ADC,然后證明得到,即可得到△ABE∽△ADC.【詳解】證明:(1)∵OD2=OE·OB,∴.∵AD//BC,∴.∴.∴AF//CD.∴四邊形AFCD是平行四邊形.(2)∵AF//CD,∴∠AED=∠BDC,.∵BC=BD,∴BE=BF,∠BDC=∠BCD∴∠AED=∠BCD.∵∠AEB=180°∠AED,∠ADC=180°∠BCD,∴∠AEB=∠ADC.∵AE·AF=AD·BF,∴.∵四邊形AFCD是平行四邊形,∴AF=CD.∴.∴△ABE∽△ADC.【點睛】本題考查了相似三角形的判定和性質(zhì),平行線分線段成比例,平行四邊形的判定和性質(zhì),以及平行線的性質(zhì),解題的關(guān)鍵是熟練掌握相似三角形的判定方法,正確找到證明三角形相似的條件.23、(1)AM=DE,AM⊥DE,理由詳見解析;(2)AM=DE,AM⊥DE,理由詳見解析.【解析】試題分析:(1)AM=DE,AM⊥DE,理由是:先證明△DAE≌△BAG,得DE=BG,∠AED=∠AGB,再根據(jù)直角三角形斜邊的中線的性質(zhì)得AM=BG,AM=BM,則AM=DE,由角的關(guān)系得∠MAB+∠AED=90°,所以∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:作輔助線構(gòu)建全等三角形,證明△MNG≌△MAB和△AGN≌△EAD可以得出結(jié)論.試題解析:(1)AM=DE,AM⊥DE,理由是:如圖1,設(shè)AM交DE于點O,∵四邊形ABCD和四邊形AEFG都是正方形,∴AG=AE,AD=AB,∵∠DAE=∠BAG,∴△DAE≌△BAG,∴DE=BG,∠AED=∠AGB,在Rt△ABG中,∵M為線段BG的中點,∴AM=BG,AM=BM,∴AM=DE,∵AM=BM,∴∠MBA=∠MAB,∵∠AGB+∠MBA=90°,∴∠MAB+∠AED=90°,∴∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:如圖2,延長AM到N,使MN=AM,連接NG,∵MN=AM,MG=BM,∠NMG=∠BMA,∴△MNG≌△MAB,∴NG=AB,∠N=∠BAN,由(1)得:AB=AD,∴NG=AD,∵∠BAN+∠DAN=90°,∴∠N+∠DAN=90°,∴NG⊥AD,∴∠AGN+∠DAG=90°,∵∠DAG+∠DAE=∠EAG=90°,∴∠AGN=∠DAE,∵NG=AD,AG=AE,∴△AGN≌△EAD,∴AN=DE,∠N=∠ADE,∵∠N+∠DAN=90°,∴∠ADE+∠DAN=90°,∴AM⊥DE.考點:旋轉(zhuǎn)的性質(zhì);正方形的性質(zhì).24、(1)400,圖詳見解析;(2)B;(3)660人.【分析】(1)用E組的人數(shù)除以E組所占的百分比即可得出學生總?cè)藬?shù);根據(jù)總?cè)藬?shù)乘以B組所占百分比可得B組的人數(shù),利用A、C各組的人數(shù)除以總?cè)藬?shù)即得A、C兩組所占百分比,進而可補全兩幅統(tǒng)計圖;(2)根據(jù)中位數(shù)的定義判斷即可;(3)利用總?cè)藬?shù)乘以A、B兩組的百分比之和求解即可.【詳解】解:(1)40÷10%=400,∴抽取的學生共有400人;B組人數(shù)為:400×30%=120,A組占:100÷400=25%,C組占:80÷

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論