版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第一部分平面向量的概念及線性運(yùn)算1.向量的有關(guān)概念名稱(chēng)定義備注向量既有大小又有方向的量;向量的大小叫做向量的長(zhǎng)度(或稱(chēng)模)平面向量是自由向量零向量長(zhǎng)度為零的向量;其方向是任意的記作0單位向量長(zhǎng)度等于1個(gè)單位的向量非零向量a的單位向量為±eq\f(a,|a|)平行向量方向相同或相反的非零向量0與任一向量平行或共線共線向量方向相同或相反的非零向量又叫做共線向量相等向量長(zhǎng)度相等且方向相同的向量?jī)上蛄恐挥邢嗟然虿坏?,不能比較大小相反向量長(zhǎng)度相等且方向相反的向量0的相反向量為02.向量的線性運(yùn)算向量運(yùn)算定義法則(或幾何意義)運(yùn)算律加法求兩個(gè)向量和的運(yùn)算(1)交換律:a+b=b+a.(2)結(jié)合律:(a+b)+c=a+(b+c)減法求a與b的相反向量-b的和的運(yùn)算叫做a與b的差a-b=a+(-b)數(shù)乘求實(shí)數(shù)λ與向量a的積的運(yùn)算(1)|λa|=|λ||a|;(2)當(dāng)λ>0時(shí),λa的方向與a的方向相同;當(dāng)λ<0時(shí),λa的方向與a的方向相反;當(dāng)λ=0時(shí),λa=0λ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共線向量定理向量a(a≠0)與b共線的充要條件是存在唯一一個(gè)實(shí)數(shù)λ,使得b=λa.【基礎(chǔ)練習(xí)】1.判斷正誤(在括號(hào)內(nèi)打“√”或“×”)(1)零向量與任意向量平行.()(2)若a∥b,b∥c,則a∥c.()(3)向量eq\o(AB,\s\up6(→))與向量eq\o(CD,\s\up6(→))是共線向量,則A,B,C,D四點(diǎn)在一條直線上.()(4)當(dāng)兩個(gè)非零向量a,b共線時(shí),一定有b=λa,反之成立.()(5)在△ABC中,D是BC中點(diǎn),則eq\o(AD,\s\up6(→))=eq\f(1,2)(eq\o(AC,\s\up6(→))+eq\o(AB,\s\up6(→))).()2.給出下列命題:①零向量的長(zhǎng)度為零,方向是任意的;②若a,b都是單位向量,則a=b;③向量eq\o(AB,\s\up6(→))與eq\o(BA,\s\up6(→))相等.則所有正確命題的序號(hào)是()A.① B.③ C.①③ D.①②3.(2017·棗莊模擬)設(shè)D為△ABC所在平面內(nèi)一點(diǎn),eq\o(AD,\s\up6(→))=-eq\f(1,3)eq\o(AB,\s\up6(→))+eq\f(4,3)eq\o(AC,\s\up6(→)),若eq\o(BC,\s\up6(→))=λeq\o(DC,\s\up6(→))(λ∈R),則λ=()A.2 B.3 C.-2 D.-34.(2015·全國(guó)Ⅱ卷)設(shè)向量a,b不平行,向量λa+b與a+2b平行,則實(shí)數(shù)λ=____________.5.(必修4P92A12改編)已知?ABCD的對(duì)角線AC和BD相交于O,且eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,則eq\o(DC,\s\up6(→))=______,eq\o(BC,\s\up6(→))=________(用a,b表示).6.(2017·嘉興七校聯(lián)考)設(shè)D,E分別是△ABC的邊AB,BC上的點(diǎn),AD=eq\f(1,2)AB,BE=eq\f(2,3)BC,若eq\o(DE,\s\up6(→))=λ1eq\o(AB,\s\up6(→))+λ2eq\o(AC,\s\up6(→))(λ1,λ2為實(shí)數(shù)),則λ1=________,λ2=________.考點(diǎn)一平面向量的概念【例1】下列命題中,不正確的是________(填序號(hào)).①若|a|=|b|,則a=b;②若A,B,C,D是不共線的四點(diǎn),則“eq\o(AB,\s\up6(→))=eq\o(DC,\s\up6(→))”是“四邊形ABCD為平行四邊形”的充要條件;③若a=b,b=c,則a=c.【訓(xùn)練1】下列命題中,正確的是________(填序號(hào)).①有向線段就是向量,向量就是有向線段;②向量a與向量b平行,則a與b的方向相同或相反;③兩個(gè)向量不能比較大小,但它們的模能比較大小.解析①不正確,向量可以用有向線段表示,但向量不是有向線段,有向線段也不是向量;②不正確,若a與b中有一個(gè)為零向量,零向量的方向是不確定的,故兩向量方向不一定相同或相反;③正確,向量既有大小,又有方向,不能比較大??;向量的模均為實(shí)數(shù),可以比較大小.答案③考點(diǎn)二平面向量的線性運(yùn)算【例2】(2017·濰坊模擬)在△ABC中,P,Q分別是AB,BC的三等分點(diǎn),且AP=eq\f(1,3)AB,BQ=eq\f(1,3)BC.若eq\o(AB,\s\up6(→))=a,eq\o(AC,\s\up6(→))=b,則eq\o(PQ,\s\up6(→))=()A.eq\f(1,3)a+eq\f(1,3)b B.-eq\f(1,3)a+eq\f(1,3)bC.eq\f(1,3)a-eq\f(1,3)b D.-eq\f(1,3)a-eq\f(1,3)b【訓(xùn)練2】(1)如圖,正方形ABCD中,點(diǎn)E是DC的中點(diǎn),點(diǎn)F是BC的一個(gè)靠近B點(diǎn)的三等分點(diǎn),那么eq\o(EF,\s\up6(→))等于()A.eq\f(1,2)eq\o(AB,\s\up6(→))-eq\f(1,3)eq\o(AD,\s\up6(→)) B.eq\f(1,4)eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(AD,\s\up6(→))C.eq\f(1,3)eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(DA,\s\up6(→)) D.eq\f(1,2)eq\o(AB,\s\up6(→))-eq\f(2,3)eq\o(AD,\s\up6(→))考點(diǎn)三共線向量定理及其應(yīng)用【例3】設(shè)兩個(gè)非零向量a與b不共線.(1)若eq\o(AB,\s\up6(→))=a+b,eq\o(BC,\s\up6(→))=2a+8b,eq\o(CD,\s\up6(→))=3(a-b).求證:A,B,D三點(diǎn)共線;(2)試確定實(shí)數(shù)k,使ka+b和a+kb共線.【訓(xùn)練3】已知向量eq\o(AB,\s\up6(→))=a+3b,eq\o(BC,\s\up6(→))=5a+3b,eq\o(CD,\s\up6(→))=-3a+3b,則()A.A,B,C三點(diǎn)共線 B.A,B,D三點(diǎn)共線C.A,C,D三點(diǎn)共線 D.B,C,D三點(diǎn)共線第二部分平面向量基本定理與坐標(biāo)表示1.平面向量的基本定理如果e1,e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.其中,不共線的向量e1,e2叫做表示這一平面內(nèi)所有向量的一組基底.2.平面向量的正交分解把一個(gè)向量分解為兩個(gè)互相垂直的向量,叫做把向量正交分解.3.平面向量的坐標(biāo)運(yùn)算(1)向量加法、減法、數(shù)乘向量及向量的模設(shè)a=(x1,y1),b=(x2,y2),則a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=eq\r(xeq\o\al(2,1)+yeq\o\al(2,1)).(2)向量坐標(biāo)的求法①若向量的起點(diǎn)是坐標(biāo)原點(diǎn),則終點(diǎn)坐標(biāo)即為向量的坐標(biāo).②設(shè)A(x1,y1),B(x2,y2),則eq\o(AB,\s\up6(→))=(x2-x1,y2-y1),|eq\o(AB,\s\up6(→))|=eq\r((x2-x1)2+(y2-y1)2).4.平面向量共線的坐標(biāo)表示設(shè)a=(x1,y1),b=(x2,y2),則a∥b?x1y2-x2y1=0.【基礎(chǔ)練習(xí)】1.(2017·東陽(yáng)月考)已知向量a=(2,4),b=(-1,1),則2a+b等于()A.(5,7) B.(5,9) C.(3,7) D.(3,9)2.(2015·全國(guó)Ⅰ卷)已知點(diǎn)A(0,1),B(3,2),向量eq\o(AC,\s\up6(→))=(-4,-3),則向量eq\o(BC,\s\up6(→))=()A.(-7,-4) B.(7,4)C.(-1,4) D.(1,4)3.(2016·全國(guó)Ⅱ卷)已知向量a=(m,4),b=(3,-2),且a∥b,則m=________.4.(必修4P101A3改編)已知?ABCD的頂點(diǎn)A(-1,-2),B(3,-1),C(5,6),則頂點(diǎn)D的坐標(biāo)為_(kāi)_______.考點(diǎn)一平面向量基本定理及其應(yīng)用【例1】(2014·全國(guó)Ⅰ卷)設(shè)D,E,F(xiàn)分別為△ABC的三邊BC,CA,AB的中點(diǎn),則eq\o(EB,\s\up6(→))+eq\o(FC,\s\up6(→))=()A.eq\o(AD,\s\up6(→)) B.eq\f(1,2)eq\o(AD,\s\up6(→)) C.eq\f(1,2)eq\o(BC,\s\up6(→)) D.eq\o(BC,\s\up6(→))【訓(xùn)練1】如圖,已知eq\o(AB,\s\up6(→))=a,eq\o(AC,\s\up6(→))=b,eq\o(BD,\s\up6(→))=3eq\o(DC,\s\up6(→)),用a,b表示eq\o(AD,\s\up6(→)),則eq\o(AD,\s\up6(→))=________.考點(diǎn)二平面向量的坐標(biāo)運(yùn)算【例2】(1)已知向量a=(5,2),b=(-4,-3),c=(x,y),若3a-2b+c=0,則c=()A.(-23,-12) B.(23,12)C.(7,0) D.(-7,0)【訓(xùn)練2】(1)已知點(diǎn)A(-1,5)和向量a=(2,3),若eq\o(AB,\s\up6(→))=3a,則點(diǎn)B的坐標(biāo)為()A.(7,4) B.(7,14)C.(5,4) D.(5,14)(2)(2015·江蘇卷)已知向量a=(2,1),b=(1,-2).若ma+nb=(9,-8)(m,n∈R),則m-n的值為_(kāi)_______.考點(diǎn)三平面向量共線的坐標(biāo)表示【例3】(1)已知平面向量a=(1,2),b=(-2,m),且a∥b,則2a+3b=________.(2)(必修4P101練習(xí)7改編)已知A(2,3),B(4,-3),點(diǎn)P在線段AB的延長(zhǎng)線上,且|AP|=eq\f(3,2)|BP|,則點(diǎn)P的坐標(biāo)為_(kāi)_______.【訓(xùn)練3】(1)(2017·浙江三市十二校聯(lián)考)已知點(diǎn)A(1,3),B(4,-1),則與eq\o(AB,\s\up6(→))同方向的單位向量是()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,5),-\f(4,5))) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,5),-\f(3,5)))C.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(3,5),\f(4,5))) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(4,5),\f(3,5)))(2)若三點(diǎn)A(1,-5),B(a,-2),C(-2,-1)共線,則實(shí)數(shù)a的值為_(kāi)_______.第三部分平面向量的數(shù)量積及其應(yīng)用1.平面向量數(shù)量積的有關(guān)概念(1)向量的夾角:已知兩個(gè)非零向量a和b,記eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,則∠AOB=θ(0°≤θ≤180°)叫做向量a與b的夾角.(2)數(shù)量積的定義:已知兩個(gè)非零向量a與b,它們的夾角為θ,則數(shù)量|a||b|cos__θ叫做a與b的數(shù)量積(或內(nèi)積),記作a·b,即a·b=|a||b|cos__θ,規(guī)定零向量與任一向量的數(shù)量積為0,即0·a=0.(3)數(shù)量積幾何意義:數(shù)量積a·b等于a的長(zhǎng)度|a|與b在a的方向上的投影|b|cosθ的乘積.2.平面向量數(shù)量積的性質(zhì)及其坐標(biāo)表示設(shè)向量a=(x1,y1),b=(x2,y2),θ為向量a,b的夾角.(1)數(shù)量積:a·b=|a||b|cosθ=x1x2+y1y2.(2)模:|a|=eq\r(a·a)=eq\r(xeq\o\al(2,1)+yeq\o\al(2,1)).(3)夾角:cosθ=eq\f(a·b,|a||b|)=eq\f(x1x2+y1y2,\r(xeq\o\al(2,1)+yeq\o\al(2,1))·\r(xeq\o\al(2,2)+yeq\o\al(2,2))).(4)兩非零向量a⊥b的充要條件:a·b=0?x1x2+y1y2=0.(5)|a·b|≤|a||b|(當(dāng)且僅當(dāng)a∥b時(shí)等號(hào)成立)?|x1x2+y1y2|≤eq\r(xeq\o\al(2,1)+yeq\o\al(2,1))·eq\r(xeq\o\al(2,2)+yeq\o\al(2,2)).3.平面向量數(shù)量積的運(yùn)算律:(1)a·b=b·a(交換律).(2)λa·b=λ(a·b)=a·(λb)(結(jié)合律).(3)(a+b)·c=a·c+b·c(分配律).【基礎(chǔ)練習(xí)】1.(2015·全國(guó)Ⅱ卷)向量a=(1,-1),b=(-1,2),則(2a+b)·a等于()A.-1 B.0 C.1 D.22.(2017·湖州模擬)已知向量a,b,其中|a|=eq\r(3),|b|=2,且(a-b)⊥a,則向量a和b的夾角是________.3.(2016·石家莊模擬)已知平面向量a,b的夾角為eq\f(2π,3),|a|=2,|b|=1,則|a+b|=________.5.(必修4P104例1改編)已知|a|=5,|b|=4,a與b的夾角θ=120°,則向量b在向量a方向上的投影為_(kāi)_______.6.(2017·瑞安一中檢測(cè))已知a,b,c是同一平面內(nèi)的三個(gè)向量,其中a=(1,2),|b|=1,且a+b與a-2b垂直,則向量a·b=________;a與b的夾角θ的余弦值為_(kāi)_______.【考點(diǎn)突破】考點(diǎn)一平面向量的數(shù)量積及在平面幾何中的應(yīng)用(用已知表示未知)【例1】(1)(2015·四川卷)設(shè)四邊形ABCD為平行四邊形,|eq\o(AB,\s\up6(→))|=6,|eq\o(AD,\s\up6(→))|=4,若點(diǎn)M,N滿足eq\o(BM,\s\up6(→))=3eq\o(MC,\s\up6(→)),eq\o(DN,\s\up6(→))=2eq\o(NC,\s\up6(→)),則eq\o(AM,\s\up6(→))·eq\o(NM,\s\up6(→))等于()A.20 B.15 C.9 D.6(2)(2016·天津卷)已知△ABC是邊長(zhǎng)為1的等邊三角形,點(diǎn)D,E分別是邊AB,BC的中點(diǎn),連接DE并延長(zhǎng)到點(diǎn)F,使得DE=2EF,則eq\o(AF,\s\up6(→))·eq\o(BC,\s\up6(→))的值為()A.-eq\f(5,8) B.eq\f(1,8) C.eq\f(1,4) D.eq\f(11,8)【訓(xùn)練1】(1)(2017·義烏市調(diào)研)在Rt△ABC中,∠A=90°,AB=AC=2,點(diǎn)D為AC的中點(diǎn),點(diǎn)E滿足eq\o(BE,\s\up6(→))=eq\f(1,3)eq\o(BC,\s\up6
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 化工合同審批管理
- 食品文化節(jié)采暖系統(tǒng)施工合同
- 水產(chǎn)養(yǎng)殖防水保溫施工協(xié)議
- 藝人演出教育推廣協(xié)議
- 農(nóng)業(yè)科技招投標(biāo)與合同履約分析
- 婚慶策劃公司租賃合同
- 建筑工程水電站施工合同樣本
- 綠色商業(yè)植草磚施工合同
- 電影院干掛石材施工協(xié)議
- 洗衣服務(wù)公司人事經(jīng)理聘用合同
- 低空經(jīng)濟(jì)的商業(yè)化路徑分析
- 七年級(jí)上冊(cè)道德與法治2023-2024期末試題附答案系列
- 代賬公司會(huì)計(jì)主管年終總結(jié)
- 創(chuàng)新思維訓(xùn)練學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 網(wǎng)絡(luò)與信息安全管理員(高級(jí)技師)資格理論考試題及答案
- 廣東省肇慶市2023-2024學(xué)年高二上學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題 政治試題 附答案
- 街道社區(qū)城管工作目標(biāo)考核細(xì)則
- 國(guó)開(kāi)電大專(zhuān)科《Dreamweaver網(wǎng)頁(yè)設(shè)計(jì)》2023-2024期末試題及答案(試卷號(hào):2445)
- 體育概論(第二版)課件第三章體育目的
- 2024年《中華人民共和國(guó)監(jiān)察法》知識(shí)測(cè)試題庫(kù)及答案
- 科學(xué)與文化的足跡學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
評(píng)論
0/150
提交評(píng)論