




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年湖北省黃岡市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.A.A.必條件收斂B.必絕對(duì)收斂C.必發(fā)散D.收斂但可能為條件收斂,也可能為絕對(duì)收斂
2.
3.A.A.較高階的無窮小量B.等價(jià)無窮小量C.同階但不等價(jià)無窮小量D.較低階的無窮小量
4.設(shè)函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導(dǎo),f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().
A.不存在零點(diǎn)
B.存在唯一零點(diǎn)
C.存在極大值點(diǎn)
D.存在極小值點(diǎn)
5.
6.過點(diǎn)(1,0,O),(0,1,O),(0,0,1)的平面方程為()A.A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
7.當(dāng)x→0時(shí),下列變量中為無窮小的是()。
A.lg|x|
B.
C.cotx
D.
8.
9.當(dāng)a→0時(shí),2x2+3x是x的().A.A.高階無窮小B.等價(jià)無窮小C.同階無窮小,但不是等價(jià)無窮小D.低階無窮小10.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線11.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
12.
13.
A.
B.
C.
D.
14.當(dāng)x→0時(shí),2x+x2與x2比較是A.A.高階無窮小B.低階無窮小C.同階但不等價(jià)無窮小D.等價(jià)無窮小15.設(shè)函數(shù)在x=0處連續(xù),則a等于().A.A.0B.1/2C.1D.2
16.
17.建立共同愿景屬于()的管理觀念。
A.科學(xué)管理B.企業(yè)再造C.學(xué)習(xí)型組織D.目標(biāo)管理
18.下列()不是組織文化的特征。
A.超個(gè)體的獨(dú)特性B.不穩(wěn)定性C.融合繼承性D.發(fā)展性19.
20.
A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)二、填空題(20題)21.設(shè),其中f(x)為連續(xù)函數(shù),則f(x)=______.22.
23.
24.
25.設(shè),則f'(x)=______.26.
27.
28.
29.
30.31.32.設(shè)z=ln(x2+y),則dz=______.33.
34.
35.
36.37.38.39.
40.三、計(jì)算題(20題)41.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.42.求曲線在點(diǎn)(1,3)處的切線方程.43.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.44.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
45.
46.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).47.
48.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
49.
50.求微分方程y"-4y'+4y=e-2x的通解.
51.
52.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則53.
54.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.56.57.58.將f(x)=e-2X展開為x的冪級(jí)數(shù).59.證明:60.求微分方程的通解.四、解答題(10題)61.
62.計(jì)算63.64.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
65.
66.
67.(本題滿分8分)
68.求微分方程y"-y'-2y=0的通解。
69.
70.五、高等數(shù)學(xué)(0題)71.若f(x)<0,(a<z≤b)且f(b)<0,則在(a,b)內(nèi)()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號(hào)不定六、解答題(0題)72.
參考答案
1.D
2.A
3.C本題考查的知識(shí)點(diǎn)為無窮小量階的比較.
4.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點(diǎn)定理可知,y=f(x)在(a,b)內(nèi)至少存在一個(gè)零點(diǎn).又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點(diǎn),則至多存在一個(gè).
綜合上述f(x)在(a,b)內(nèi)存在唯一零點(diǎn),故選B.
5.B
6.A
7.D
8.A
9.C本題考查的知識(shí)點(diǎn)為無窮小階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時(shí),2x3+3x是x的同階無窮小,但不是等價(jià)無窮小,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無窮小盧與無窮小α的階的關(guān)系時(shí),要判定極限
這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.
10.D本題考查了曲線的漸近線的知識(shí)點(diǎn),
11.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
12.D解析:un、vn可能為任意數(shù)值,因此正項(xiàng)級(jí)數(shù)的比較判別法不能成立,可知應(yīng)選D。
13.B
14.B
15.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
由函數(shù)連續(xù)性的定義可知,若f(x)在x=0處連續(xù),則有,由題設(shè)f(0)=a,
可知應(yīng)有a=1,故應(yīng)選C.
16.D解析:
17.C解析:建立共同愿景屬于學(xué)習(xí)型組織的管理觀念。
18.B解析:組織文化的特征:(1)超個(gè)體的獨(dú)特性;(2)相對(duì)穩(wěn)定性;(3)融合繼承性;(4)發(fā)展性。
19.C
20.A
本題考查的知識(shí)點(diǎn)為級(jí)數(shù)絕對(duì)收斂與條件收斂的概念.21.2e2x本題考查的知識(shí)點(diǎn)為可變上限積分求導(dǎo).
由于f(x)為連續(xù)函數(shù),因此可對(duì)所給表達(dá)式兩端關(guān)于x求導(dǎo).
22.
23.7
24.
25.本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
26.
27.(2x-y)dx+(2y-x)dy(2x-y)dx+(2y-x)dy解析:
28.
29.e
30.
31.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
32.本題考查的知識(shí)點(diǎn)為求二元函數(shù)的全微分.
通常求二元函數(shù)的全微分的思路為:
先求出如果兩個(gè)偏導(dǎo)數(shù)為連續(xù)函數(shù),則可得知
由題設(shè)z=ln(x2+y),令u=x2+y,可得
當(dāng)X2+y≠0時(shí),為連續(xù)函數(shù),因此有
33.1
34.
35.π/8
36.37.2本題考查的知識(shí)點(diǎn)為二重積分的幾何意義.
由二重積分的幾何意義可知,所給二重積分的值等于長(zhǎng)為1,寬為2的矩形的面積值,故為2.或由二重積分計(jì)算可知
38.
39.e;本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
注意:可以變形,化為形式的極限.但所給極限通常可以先變形:
40.
41.
42.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
43.由二重積分物理意義知
44.
45.
46.
列表:
說明
47.
48.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%49.由一階線性微分方程通解公式有
50.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
51.52.由等價(jià)無窮小量的定義可知
53.
則
54.
55.函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 集裝箱道路運(yùn)輸與物流配送考核試卷
- 玻璃儀器表面處理技術(shù)考核試卷
- 品牌策劃設(shè)計(jì)說明
- 春季季節(jié)性疾病預(yù)防指南
- 口腔探診手法教學(xué)
- 心跳呼吸驟停護(hù)理常規(guī)
- 肺功能低下病人的麻醉處理原則
- 高一數(shù)學(xué)教學(xué)設(shè)計(jì)
- 16-Hydroxyroridin-L-2-生命科學(xué)試劑-MCE
- 自然語言及語音處理項(xiàng)目式教程 實(shí)訓(xùn)指導(dǎo) 實(shí)訓(xùn)20 基于PaddleSpeech實(shí)現(xiàn)新聞自動(dòng)播報(bào)
- 如皋護(hù)士招聘題目及答案
- 護(hù)理網(wǎng)格化管理制度
- 國家開放大學(xué)《中國法律史》期末機(jī)考題庫
- 國家開放大學(xué)《管理學(xué)基礎(chǔ)》期末機(jī)考題庫
- 2025中考英語書面表達(dá)終極押題(附范文)
- 【MOOC】國際商務(wù)-暨南大學(xué) 中國大學(xué)慕課MOOC答案
- 2024年北京大學(xué)強(qiáng)基計(jì)劃物理試題(附答案)
- 計(jì)算機(jī)網(wǎng)絡(luò)與信息安全(2024年版)課件全套 李全龍 第01-10章 計(jì)算機(jī)網(wǎng)絡(luò)與信息安全概述- 網(wǎng)絡(luò)安全協(xié)議與技術(shù)措施
- (正式版)JBT 14449-2024 起重機(jī)械焊接工藝評(píng)定
- DB37T 4309-2021 礦床三維地質(zhì)建模規(guī)范
- 產(chǎn)品可追溯性模擬演練記錄
評(píng)論
0/150
提交評(píng)論