版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.小蘇和小林在如圖①所示的跑道上進行米折返跑.在整個過程中,跑步者距起跑線的距離(單位:)與跑步時間(單位:)的對應(yīng)關(guān)系如圖②所示.下列敘述正確的是().A.兩人從起跑線同時出發(fā),同時到達終點B.小蘇跑全程的平均速度大于小林跑全程的平均速度C.小蘇前跑過的路程大于小林前跑過的路程D.小林在跑最后的過程中,與小蘇相遇2次2.一個多邊形的每個內(nèi)角都等于120°,則這個多邊形的邊數(shù)為()A.4 B.5 C.6 D.73.如圖,為測量平地上一塊不規(guī)則區(qū)域(圖中的陰影部分)的面積,畫一個邊長為4m的正方形,使不規(guī)則區(qū)域落在正方形內(nèi).現(xiàn)向正方形內(nèi)隨機投擲小球(假設(shè)小球落在正方形內(nèi)每一點都是等可能的),經(jīng)過大量重復(fù)投擲試驗,發(fā)現(xiàn)小球落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.65附近,由此可估計不規(guī)則區(qū)域的面積約為()A.2.6m2 B.5.6m2 C.8.25m2 D.10.4m24.在方格紙中,選擇標有序號①②③④中的一個小正方形涂黑,與圖中陰影部分構(gòu)成中心對稱圖形.該小正方形的序號是()A.① B.② C.③ D.④5.在平面直角坐標系中,將點P(﹣4,2)繞原點O順時針旋轉(zhuǎn)90°,則其對應(yīng)點Q的坐標為()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)6.如圖,AB∥CD,DB⊥BC,∠2=50°,則∠1的度數(shù)是()A.40° B.50° C.60° D.140°7.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.48.觀察下面“品”字形中各數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為()A.23 B.75 C.77 D.1399.如圖,每個小正方形的邊長均為1,則下列圖形中的三角形(陰影部分)與相似的是()A. B.C. D.10.如圖是某幾何體的三視圖,則該幾何體的全面積等于()A.112 B.136 C.124 D.84二、填空題(本大題共6個小題,每小題3分,共18分)11.下列對于隨機事件的概率的描述:①拋擲一枚均勻的硬幣,因為“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,就會有50次“正面朝上”;②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機摸出一個球,恰好是白球的概率是0.2;③測試某射擊運動員在同一條件下的成績,隨著射擊次數(shù)的增加,“射中9環(huán)以上”的頻率總是在0.85附近擺動,顯示出一定的穩(wěn)定性,可以估計該運動員“射中9環(huán)以上”的概率是0.85其中合理的有______(只填寫序號).12.如圖,等腰三角形ABC的底邊BC長為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點E、F,若點D為底邊BC的中點,點M為線段EF上一動點,則△BDM的周長的最小值為_____.13.如圖,在中,CM平分交AB于點M,過點M作交AC于點N,且MN平分,若,則BC的長為______.14.若實數(shù)m、n在數(shù)軸上的位置如圖所示,則(m+n)(m-n)________0,(填“>”、“<”或“=”)15.如圖,直線a,b被直線c所截,a∥b,∠1=∠2,若∠3=40°,則∠4等于________.16.拋物線y=2x2+4向左平移2個單位長度,得到新拋物線的表達式為_____.三、解答題(共8題,共72分)17.(8分)如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).求拋物線的函數(shù)解析式;點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.18.(8分)一次函數(shù)的圖象經(jīng)過點和點,求一次函數(shù)的解析式.19.(8分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點D,過點D的直線交BC于點E,交AB的延長線于點P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長;(3)如圖②,點M是弧AB的中點,連結(jié)DM,交AB于點N.若tanA=12,求DN20.(8分)為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.種類ABCDE出行方式共享單車步行公交車的士私家車根據(jù)以上信息,回答下列問題:(1)參與本次問卷調(diào)查的市民共有人,其中選擇B類的人數(shù)有人;(2)在扇形統(tǒng)計圖中,求A類對應(yīng)扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖;(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數(shù).21.(8分)先化簡,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.22.(10分)先化簡再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.23.(12分)如圖,在平面直角坐標系中,拋物線y=-x2+bx+c與x軸交于點A(-1,0),點B(3,0),與y軸交于點C,線段BC與拋物線的對稱軸交于點E、P為線段BC上的一點(不與點B、C重合),過點P作PF∥y軸交拋物線于點F,連結(jié)DF.設(shè)點P的橫坐標為m.(1)求此拋物線所對應(yīng)的函數(shù)表達式.(2)求PF的長度,用含m的代數(shù)式表示.(3)當四邊形PEDF為平行四邊形時,求m的值.24.在“打造青山綠山,建設(shè)美麗中國”的活動中,某學(xué)校計劃組織全校1441名師生到相關(guān)部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當?shù)刈廛嚬疽还?2輛A、B兩種型號客車作為交通工具,下表是租車公司提供給學(xué)校有關(guān)兩種型號客車的載客量和租金信息:型號載客量租金單價A30人/輛380元/輛B20人/輛280元/輛注:載客量指的是每輛客車最多可載該校師生的人數(shù).(1)設(shè)租用A型號客車x輛,租車總費用為y元,求y與x的函數(shù)解析式。(2)若要使租車總費用不超過19720元,一共有幾種租車方案?那種租車方案最省錢?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
A.由圖可看出小林先到終點,A錯誤;B.全程路程一樣,小林用時短,所以小林的平均速度大于小蘇的平均速度,B錯誤;C.第15秒時,小蘇距離起點較遠,兩人都在返回起點的過程中,據(jù)此可判斷小林跑的路程大于小蘇跑的路程,C錯誤;D.由圖知兩條線的交點是兩人相遇的點,所以是相遇了兩次,正確.故選D.2、C【解析】試題解析:∵多邊形的每一個內(nèi)角都等于120°,∴多邊形的每一個外角都等于180°-120°=10°,∴邊數(shù)n=310°÷10°=1.故選C.考點:多邊形內(nèi)角與外角.3、D【解析】
首先確定小石子落在不規(guī)則區(qū)域的概率,然后利用概率公式求得其面積即可.【詳解】∵經(jīng)過大量重復(fù)投擲試驗,發(fā)現(xiàn)小石子落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.65附近,∴小石子落在不規(guī)則區(qū)域的概率為0.65,∵正方形的邊長為4m,∴面積為16m2設(shè)不規(guī)則部分的面積為sm2則=0.65解得:s=10.4故答案為:D.【點睛】利用頻率估計概率.4、B【解析】根據(jù)中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合。因此,通過觀察發(fā)現(xiàn),當涂黑②時,所形成的圖形關(guān)于點A中心對稱。故選B。5、A【解析】
首先求出∠MPO=∠QON,利用AAS證明△PMO≌△ONQ,即可得到PM=ON,OM=QN,進而求出Q點坐標.【詳解】作圖如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P點坐標為(﹣4,2),∴Q點坐標為(2,4),故選A.【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì),以及全等三角形的判定和性質(zhì),關(guān)鍵是掌握旋轉(zhuǎn)后對應(yīng)線段相等.6、A【解析】試題分析:根據(jù)直角三角形兩銳角互余求出∠3,再根據(jù)兩直線平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故選A.7、D【解析】
①根據(jù)作圖的過程可知,AD是∠BAC的平分線.故①正確.②如圖,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正確.③∵∠1=∠B=10°,∴AD=BD.∴點D在AB的中垂線上.故③正確.④∵如圖,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD.∴S△ABC=AC?BC=AC?AD=AC?AD.∴S△DAC:S△ABC.故④正確.綜上所述,正確的結(jié)論是:①②③④,,共有4個.故選D.8、B【解析】
由圖可知:上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),上邊的數(shù)為連續(xù)的奇數(shù),左邊的數(shù)為21,22,23,…26,由此可得a,b.【詳解】∵上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,∴b=26=1.∵上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),∴a=11+1=2.故選B.【點睛】本題考查了數(shù)字變化規(guī)律,觀察出上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù)是解題的關(guān)鍵.9、B【解析】
根據(jù)相似三角形的判定方法一一判斷即可.【詳解】解:因為中有一個角是135°,選項中,有135°角的三角形只有B,且滿足兩邊成比例夾角相等,故選:B.【點睛】本題考查相似三角形的性質(zhì),解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的思想解決問題,屬于中考??碱}型.10、B【解析】試題解析:該幾何體是三棱柱.如圖:由勾股定理全面積為:故該幾何體的全面積等于1.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、②③【解析】
大量反復(fù)試驗下頻率穩(wěn)定值即概率.注意隨機事件發(fā)生的概率在0和1之間.根據(jù)事件的類型及概率的意義找到正確選項即可.【詳解】解:①拋擲一枚均勻的硬幣,因為“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,大約有50次“正面朝上”,此結(jié)論錯誤;②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機摸出一個球,恰好是白球的概率是,此結(jié)論正確;③測試某射擊運動員在同一條件下的成績,隨著射擊次數(shù)的增加,“射中9環(huán)以上”的頻率總是在0.85附近擺動,顯示出一定的穩(wěn)定性,可以估計該運動員“射中9環(huán)以上”的概率是0.85,此結(jié)論正確;故答案為:②③.【點睛】本題考查了概率的意義,解題的關(guān)鍵在于掌握計算公式.12、2【解析】
連接AD交EF與點M′,連結(jié)AM,由線段垂直平分線的性質(zhì)可知AM=MB,則BM+DM=AM+DM,故此當A、M、D在一條直線上時,MB+DM有最小值,然后依據(jù)要三角形三線合一的性質(zhì)可證明AD為△ABC底邊上的高線,依據(jù)三角形的面積為12可求得AD的長.【詳解】解:連接AD交EF與點M′,連結(jié)AM.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得AD=1,∵EF是線段AB的垂直平分線,∴AM=BM.∴BM+MD=MD+AM.∴當點M位于點M′處時,MB+MD有最小值,最小值1.∴△BDM的周長的最小值為DB+AD=2+1=2.【點睛】本題考查三角形的周長最值問題,結(jié)合等腰三角形的性質(zhì)、垂直平分線的性質(zhì)以及中點的相關(guān)屬性進行分析.13、1【解析】
根據(jù)題意,可以求得∠B的度數(shù),然后根據(jù)解直角三角形的知識可以求得NC的長,從而可以求得BC的長.【詳解】∵在Rt△ABC中,CM平分∠ACB交AB于點M,過點M作MN∥BC交AC于點N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案為1.【點睛】本題考查含30°角的直角三角形、平行線的性質(zhì)、等腰三角形的判定與性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.14、>【解析】
根據(jù)數(shù)軸可以確定m、n的大小關(guān)系,根據(jù)加法以及減法的法則確定m+n以及m?n的符號,可得結(jié)果.【詳解】解:根據(jù)題意得:m<1<n,且|m|>|n|,∴m+n<1,m?n<1,∴(m+n)(m?n)>1.故答案為>.【點睛】本題考查了整式的加減和數(shù)軸,熟練掌握運算法則是解題的關(guān)鍵.15、70°【解析】
試題分析:由平角的定義可知,∠1+∠2+∠3=180°,又∠1=∠2,∠3=40°,所以∠1=(180°-40°)÷2=70°,因為a∥b,所以∠4=∠1=70°.故答案為70°.考點:角的計算;平行線的性質(zhì).16、y=2(x+2)2+1【解析】試題解析:∵二次函數(shù)解析式為y=2x2+1,∴頂點坐標(0,1)向左平移2個單位得到的點是(-2,1),可設(shè)新函數(shù)的解析式為y=2(x-h)2+k,代入頂點坐標得y=2(x+2)2+1,故答案為y=2(x+2)2+1.點睛:函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.三、解答題(共8題,共72分)17、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P點坐標(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解析】
(1)將A,B兩點坐標代入解析式,求出b,c值,即可得到拋物線解析式;(2)先根據(jù)解析式求出C點坐標,及頂點E的坐標,設(shè)點D的坐標為(0,m),作EF⊥y軸于點F,利用勾股定理表示出DC,DE的長.再建立相等關(guān)系式求出m值,進而求出D點坐標;(3)先根據(jù)邊角邊證明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后當以C、D、P為頂點的三角形與△DOC相似時,根據(jù)對應(yīng)邊不同進行分類討論:①當OC與CD是對應(yīng)邊時,有比例式,能求出DP的值,又因為DE=DC,所以過點P作PG⊥y軸于點G,利用平行線分線段成比例定理即可求出DG,PG的長度,根據(jù)點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;②當OC與DP是對應(yīng)邊時,有比例式,易求出DP,仍過點P作PG⊥y軸于點G,利用比例式求出DG,PG的長度,然后根據(jù)點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;這樣,直線DE上根據(jù)對應(yīng)邊不同,點P所在位置不同,就得到了符合條件的4個P點坐標.【詳解】解:(1)∵拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(0,﹣3),∴,解得,故拋物線的函數(shù)解析式為y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,則點C的坐標為(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴點E坐標為(1,﹣4),設(shè)點D的坐標為(0,m),作EF⊥y軸于點F(如下圖),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴點D的坐標為(0,﹣1);(3)∵點C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根據(jù)勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①當OC與CD是對應(yīng)邊時,∵△DOC∽△PDC,∴,即=,解得DP=,過點P作PG⊥y軸于點G,則,即,解得DG=1,PG=,當點P在點D的左邊時,OG=DG﹣DO=1﹣1=0,所以點P(﹣,0),當點P在點D的右邊時,OG=DO+DG=1+1=2,所以,點P(,﹣2);②當OC與DP是對應(yīng)邊時,∵△DOC∽△CDP,∴,即=,解得DP=3,過點P作PG⊥y軸于點G,則,即,解得DG=9,PG=3,當點P在點D的左邊時,OG=DG﹣OD=9﹣1=8,所以,點P的坐標是(﹣3,8),當點P在點D的右邊時,OG=OD+DG=1+9=10,所以,點P的坐標是(3,﹣10),綜上所述,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,滿足條件的點P共有4個,其坐標分別為(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).考點:1.相似三角形的判定與性質(zhì);2.二次函數(shù)動點問題;3.一次函數(shù)與二次函數(shù)綜合題.18、y=2x+1.【解析】
直接把點A(﹣1,1),B(1,5)代入一次函數(shù)y=kx+b(k≠0),求出k、b的值即可.【詳解】∵一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點A(﹣1,1)和點B(1,5),∴,解得:.故一次函數(shù)的解析式為y=2x+1.【點睛】本題考查了待定系數(shù)法求一次函數(shù)的解析式,熟知待定系數(shù)法求一次函數(shù)解析式一般步驟是解答此題的關(guān)鍵.19、(1)見解析;(2)23π;(3)【解析】
(1)連結(jié)OD;由AB是⊙O的直徑,得到∠ADB=90°,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結(jié)論;(2)設(shè)∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據(jù)∠A+∠ABD=90o列方程求出x的值,進而可得到∠DOB=60o,然后根據(jù)弧長公式計算即可;(3)連結(jié)OM,過D作DF⊥AB于點F,然后證明△OMN∽△FDN,根據(jù)相似三角形的性質(zhì)求解即可.【詳解】(1)連結(jié)OD,∵AB是⊙O的直徑,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圓上,∴PD是⊙O的切線.(2)設(shè)∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD長l=60·π·2(3)連結(jié)OM,過D作DF⊥AB于點F,∵點M是的中點,∴OM⊥AB,設(shè)BD=x,則AD=2x,AB=5x=2OM,即OM=5在Rt△BDF中,DF=25由△OMN∽△FDN得DNMN【點睛】本題是圓的綜合題,考查了切線的判定,圓周角定理及其推論,三角形外角的性質(zhì),含30°角的直角三角形的性質(zhì),弧長的計算,弧弦圓心角的關(guān)系,相似三角形的判定與性質(zhì).熟練掌握切線的判定方法是解(1)的關(guān)鍵,求出∠A=30o是解(2)的關(guān)鍵,證明△OMN∽△FDN是解(3)的關(guān)鍵.20、(1)800,240;(2)補圖見解析;(3)9.6萬人.【解析】試題分析:(1)由C類別人數(shù)及其百分比可得總?cè)藬?shù),總?cè)藬?shù)乘以B類別百分比即可得;(2)根據(jù)百分比之和為1求得A類別百分比,再乘以360°和總?cè)藬?shù)可分別求得;(3)總?cè)藬?shù)乘以樣本中A、B、C三類別百分比之和可得答案.試題解析:(1)本次調(diào)查的市民有200÷25%=800(人),∴B類別的人數(shù)為800×30%=240(人),故答案為800,240;(2)∵A類人數(shù)所占百分比為1﹣(30%+25%+14%+6%)=25%,∴A類對應(yīng)扇形圓心角α的度數(shù)為360°×25%=90°,A類的人數(shù)為800×25%=200(人),補全條形圖如下:(3)12×(25%+30%+25%)=9.6(萬人),答:估計該市“綠色出行”方式的人數(shù)約為9.6萬人.考點:1、條形統(tǒng)計圖;2、用樣本估計總體;3、統(tǒng)計表;4、扇形統(tǒng)計圖21、﹣2【解析】【分析】先利用完全平方公式、平方差公式進行展開,然后合并同類項,最后代入x、y的值進行計算即可得.【詳解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1=x1+2xy+2y1﹣2y1+x1﹣1x1=2xy,當x=+1,y=﹣1時,原式=2×(+1)×(﹣1)=2×(3﹣2)=﹣2.【點睛】本題考查了整式的混合運算——化簡求值,熟練掌握完全平方公式、平方差公式是解題的關(guān)鍵.22、;【解析】
先根據(jù)分式的混合運算順序和運算法則化簡原式,再由特殊銳角的三角函數(shù)值得出a和b的值,代入計算可得.【詳解】原式=÷(﹣)===,當a=2cos30°+1=2×+1=+1,b=tan45°=1時,原式=.【點睛】本題主要考查分式的化簡求值,在化簡的過程中要注意運算順序和分式的化簡.化簡的最后結(jié)果分子、分母要進行約分,注意運算的結(jié)果要化成最簡分式或整式,也考查了特殊銳角的三角函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州大學(xué)《機械制圖(二)》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽學(xué)院《自動控制原理C》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025黑龍江省安全員-B證考試題庫附答案
- 2025年上海建筑安全員考試題庫附答案
- 硅湖職業(yè)技術(shù)學(xué)院《廣播電視深度報道實務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025湖南建筑安全員B證考試題庫附答案
- 2025重慶市建筑安全員-B證(項目經(jīng)理)考試題庫
- 廣州幼兒師范高等??茖W(xué)校《建筑、結(jié)構(gòu)識圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州新華學(xué)院《數(shù)字化模具設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025重慶市安全員考試題庫
- 非急救轉(zhuǎn)運管理制度
- 第18課《天下第一樓(節(jié)選)》 統(tǒng)編版語文九年級下冊
- 活動策劃部培訓(xùn)課件
- 江蘇省鹽城市2022-2023學(xué)年八年級上學(xué)期期末歷史試題
- 稻草購銷合同模板
- 執(zhí)法中隊競聘演講稿
- 國有企業(yè)員工守則
- CSR社會責任管理手冊模板
- 毛澤東軍事思想概述(新)
- 錨桿框格梁施工技術(shù)交底
- 商戶清場協(xié)議書
評論
0/150
提交評論