![2022-2023學年湖北省咸寧二中學中考數學考前最后一卷含解析_第1頁](http://file4.renrendoc.com/view/128aeb33a635e3612c85bec6914778ed/128aeb33a635e3612c85bec6914778ed1.gif)
![2022-2023學年湖北省咸寧二中學中考數學考前最后一卷含解析_第2頁](http://file4.renrendoc.com/view/128aeb33a635e3612c85bec6914778ed/128aeb33a635e3612c85bec6914778ed2.gif)
![2022-2023學年湖北省咸寧二中學中考數學考前最后一卷含解析_第3頁](http://file4.renrendoc.com/view/128aeb33a635e3612c85bec6914778ed/128aeb33a635e3612c85bec6914778ed3.gif)
![2022-2023學年湖北省咸寧二中學中考數學考前最后一卷含解析_第4頁](http://file4.renrendoc.com/view/128aeb33a635e3612c85bec6914778ed/128aeb33a635e3612c85bec6914778ed4.gif)
![2022-2023學年湖北省咸寧二中學中考數學考前最后一卷含解析_第5頁](http://file4.renrendoc.com/view/128aeb33a635e3612c85bec6914778ed/128aeb33a635e3612c85bec6914778ed5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.下列多邊形中,內角和是一個三角形內角和的4倍的是()A.四邊形B.五邊形C.六邊形D.八邊形2.如圖,以∠AOB的頂點O為圓心,適當長為半徑畫弧,交OA于點C,交OB于點D.再分別以點C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內部交于點E,過點E作射線OE,連接CD.則下列說法錯誤的是A.射線OE是∠AOB的平分線B.△COD是等腰三角形C.C、D兩點關于OE所在直線對稱D.O、E兩點關于CD所在直線對稱3.從①②③④中選擇一塊拼圖板可與左邊圖形拼成一個正方形,正確的選擇為()A.① B.② C.③ D.④4.在一個不透明的盒子里有2個紅球和n個白球,這些球除顏色外其余完全相同,搖勻后隨機摸出一個,摸到紅球的概率是,則n的值為()A.10 B.8 C.5 D.35.的相反數是()A.﹣ B. C. D.26.在平面直角坐標系中,把直線y=x向左平移一個單位長度后,所得直線的解析式為()A.y=x+1B.y=x-1C.y=xD.y=x-27.把6800000,用科學記數法表示為()A.6.8×105 B.6.8×106 C.6.8×107 D.6.8×1088.如圖,BC⊥AE于點C,CD∥AB,∠B=55°,則∠1等于()A.35° B.45° C.55° D.25°9.已知方程x2﹣x﹣2=0的兩個實數根為x1、x2,則代數式x1+x2+x1x2的值為()A.﹣3 B.1 C.3 D.﹣110.若與互為相反數,則x的值是()A.1 B.2 C.3 D.4二、填空題(本大題共6個小題,每小題3分,共18分)11.用一條長60cm的繩子圍成一個面積為216的矩形.設矩形的一邊長為xcm,則可列方程為______.12.計算﹣的結果為_____.13.如圖,在直角三角形ABC中,∠ACB=90°,CA=4,點P是半圓弧AC的中點,連接BP,線段即把圖形APCB(指半圓和三角形ABC組成的圖形)分成兩部分,則這兩部分面積之差的絕對值是_____.14.如圖,某數學興趣小組將邊長為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細),則所得的扇形ABD的面積為_____.15.因式分解:x3﹣4x=_____.16.閱讀理解:引入新數i,新數i滿足分配律、結合律、交換律,已知i2=﹣1,那么(1+i)?(1﹣i)的平方根是_____.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,拋物線y=﹣x2﹣2ax與x軸相交于O、A兩點,OA=4,點D為拋物線的頂點,并且直線y=kx+b與該拋物線相交于A、B兩點,與y軸相交于點C,B點的橫坐標是﹣1.(1)求k,a,b的值;(2)若P是直線AB上方拋物線上的一點,設P點的橫坐標是t,△PAB的面積是S,求S關于t的函數關系式,并直接寫出自變量t的取值范圍;(3)在(2)的條件下,當PB∥CD時,點Q是直線AB上一點,若∠BPQ+∠CBO=180°,求Q點坐標.18.(8分)(1)計算:.(2)解方程:x2﹣4x+2=019.(8分)如圖,在平面直角坐標系中,等邊三角形ABC的頂點B與原點O重合,點C在x軸上,點C坐標為(6,0),等邊三角形ABC的三邊上有三個動點D、E、F(不考慮與A、B、C重合),點D從A向B運動,點E從B向C運動,點F從C向A運動,三點同時運動,到終點結束,且速度均為1cm/s,設運動的時間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點E作EQ∥AB,交AC于點Q,設△AEQ的面積為S,求S與t的函數關系式及t為何值時△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當△AEQ的面積最大時,平面內是否存在一點P,使A、D、Q、P構成的四邊形是菱形,若存在請直接寫出P坐標,若不存在請說明理由?20.(8分)已知,關于x的方程x2﹣mx+m2﹣1=0,(1)不解方程,判斷此方程根的情況;(2)若x=2是該方程的一個根,求m的值.21.(8分)如圖,某數學活動小組為測量學校旗桿AB的高度,沿旗桿正前方米處的點C出發(fā),沿斜面坡度的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內,AB⊥BC,AB//DE.求旗桿AB的高度.(參考數據:sin37°≈,cos37°≈,tan37°≈.計算結果保留根號)22.(10分)閱讀下列材料:數學課上老師布置一道作圖題:已知:直線l和l外一點P.求作:過點P的直線m,使得m∥l.小東的作法如下:作法:如圖2,(1)在直線l上任取點A,連接PA;(2)以點A為圓心,適當長為半徑作弧,分別交線段PA于點B,直線l于點C;(3)以點P為圓心,AB長為半徑作弧DQ,交線段PA于點D;(4)以點D為圓心,BC長為半徑作弧,交弧DQ于點E,作直線PE.所以直線PE就是所求作的直線m.老師說:“小東的作法是正確的.”請回答:小東的作圖依據是________.23.(12分)為評估九年級學生的體育成績情況,某校九年級500名學生全部參加了“中考體育模擬考試”,隨機抽取了部分學生的測試成績作為樣本,并繪制出如下兩幅不完整的統(tǒng)計表和頻數分布直方圖:成績x分人數頻率25≤x<3040.0830≤x<3580.1635≤x<40a0.3240≤x<45bc45≤x<50100.2(1)求此次抽查了多少名學生的成績;(2)通過計算將頻數分布直方圖補充完整;(3)若測試成績不低于40分為優(yōu)秀,請估計本次測試九年級學生中成績優(yōu)秀的人數.24.已知:a+b=4(1)求代數式(a+1)(b+1)﹣ab值;(2)若代數式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
利用多邊形的內角和公式列方程求解即可【詳解】設這個多邊形的邊數為n.由題意得:(n﹣2)×180°=4×180°.解得:n=1.答:這個多邊形的邊數為1.故選C.【點睛】本題主要考查的是多邊形的內角和公式,掌握多邊形的內角和公式是解題的關鍵.2、D【解析】試題分析:A、連接CE、DE,根據作圖得到OC=OD,CE=DE.∵在△EOC與△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,正確,不符合題意.B、根據作圖得到OC=OD,∴△COD是等腰三角形,正確,不符合題意.C、根據作圖得到OC=OD,又∵射線OE平分∠AOB,∴OE是CD的垂直平分線.∴C、D兩點關于OE所在直線對稱,正確,不符合題意.D、根據作圖不能得出CD平分OE,∴CD不是OE的平分線,∴O、E兩點關于CD所在直線不對稱,錯誤,符合題意.故選D.3、C【解析】
根據正方形的判定定理即可得到結論.【詳解】與左邊圖形拼成一個正方形,正確的選擇為③,故選C.【點睛】本題考查了正方形的判定,是一道幾何結論開放題,認真觀察,熟練掌握和應用正方形的判定方法是解題的關鍵.4、B【解析】∵摸到紅球的概率為,∴,解得n=8,故選B.5、A【解析】分析:根據相反數的定義結合實數的性質進行分析判斷即可.詳解:的相反數是.故選A.點睛:熟記相反數的定義:“只有符號不同的兩個數(實數)互為相反數”是正確解答這類題的關鍵.6、A【解析】向左平移一個單位長度后解析式為:y=x+1.故選A.點睛:掌握一次函數的平移.7、B【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值≥1時,n是正數;當原數的絕對值<1時,n是負數.詳解:把6800000用科學記數法表示為6.8×1.故選B.點睛:本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.8、A【解析】
根據垂直的定義得到∠∠BCE=90°,根據平行線的性質求出∠BCD=55°,計算即可.【詳解】解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故選:A.【點睛】本題考查的是平行線的性質和垂直的定義,兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.9、D【解析】分析:根據一元二次方程根與系數的關系求出x1+x2和x1x2的值,然后代入x1+x2+x1x2計算即可.詳解:由題意得,a=1,b=-1,c=-2,∴,,∴x1+x2+x1x2=1+(-2)=-1.故選D.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數的關系,若x1,x2為方程的兩個根,則x1,x2與系數的關系式:,.10、D【解析】由題意得+=0,去分母3x+4(1-x)=0,解得x=4.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
根據周長表達出矩形的另一邊,再根據矩形的面積公式即可列出方程.【詳解】解:由題意可知,矩形的周長為60cm,∴矩形的另一邊為:,∵面積為216,∴故答案為:.【點睛】本題考查了一元二次方程與實際問題,解題的關鍵是找出等量關系.12、.【解析】
根據同分母分式加減運算法則化簡即可.【詳解】原式=,故答案為.【點睛】本題考查了分式的加減運算,熟記運算法則是解題的關鍵.13、4【解析】
連接把兩部分的面積均可轉化為規(guī)則圖形的面積,不難發(fā)現(xiàn)兩部分面積之差的絕對值即為的面積的2倍.【詳解】解:連接OP、OB,∵圖形BAP的面積=△AOB的面積+△BOP的面積+扇形OAP的面積,圖形BCP的面積=△BOC的面積+扇形OCP的面積?△BOP的面積,又∵點P是半圓弧AC的中點,OA=OC,∴扇形OAP的面積=扇形OCP的面積,△AOB的面積=△BOC的面積,∴兩部分面積之差的絕對值是點睛:考查扇形面積和三角形的面積,把不規(guī)則圖形的面積轉化為規(guī)則圖形的面積是解題的關鍵.14、25【解析】試題解析:由題意15、x(x+2)(x﹣2)【解析】試題分析:首先提取公因式x,進而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案為x(x+2)(x﹣2).考點:提公因式法與公式法的綜合運用.16、2【解析】
根據平方根的定義進行計算即可.【詳解】.解:∵i2=﹣1,∴(1+i)?(1﹣i)=1﹣i2=2,∴(1+i)?(1﹣i)的平方根是±,故答案為±.【點睛】本題考查平方根以及實數的運算,解題關鍵掌握平方根的定義.三、解答題(共8題,共72分)17、(1)k=1、a=2、b=4;(2)s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;(3)Q(﹣,)【解析】
(1)根據題意可得A(-4,0)代入拋物線解析式可得a,求出拋物線解析式,根據B的橫坐標可求B點坐標,把A,B坐標代入直線解析式,可求k,b(2)過P點作PN⊥OA于N,交AB于M,過B點作BH⊥PN,設出P點坐標,可求出N點坐標,即可以用t表示S.(3)由PB∥CD,可求P點坐標,連接OP,交AC于點R,過P點作PN⊥OA于M,交AB于N,過D點作DT⊥OA于T,根據P的坐標,可得∠POA=45°,由OA=OC可得∠CAO=45°則PO⊥AB,根據拋物線的對稱性可知R在對稱軸上.設Q點坐標,根據△BOR∽△PQS,可求Q點坐標.【詳解】(1)∵OA=4∴A(﹣4,0)∴﹣16+8a=0∴a=2,∴y=﹣x2﹣4x,當x=﹣1時,y=﹣1+4=3,∴B(﹣1,3),將A(﹣4,0)B(﹣1,3)代入函數解析式,得,解得,直線AB的解析式為y=x+4,∴k=1、a=2、b=4;(2)過P點作PN⊥OA于N,交AB于M,過B點作BH⊥PN,如圖1,由(1)知直線AB是y=x+4,拋物線是y=﹣x2﹣4x,∴當x=t時,yP=﹣t2﹣4t,yN=t+4PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,化簡,得s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;∴﹣4<t<﹣1(3)y=﹣x2﹣4x,當x=﹣2時,y=4即D(﹣2,4),當x=0時,y=x+4=4,即C(0,4),∴CD∥OA∵B(﹣1,3).當y=3時,x=﹣3,∴P(﹣3,3),連接OP,交AC于點R,過P點作PN⊥OA于M,交AB于N,過D點作DT⊥OA于T,如圖2,可證R在DT上∴PN=ON=3∴∠PON=∠OPN=45°∴∠BPR=∠PON=45°,∵OA=OC,∠AOC=90°∴∠PBR=∠BAO=45°,∴PO⊥AC∵∠BPQ+∠CBO=180,∴∠BPQ=∠BCO+∠BOC過點Q作QS⊥PN,垂足是S,∴∠SPQ=∠BOR∴tan∠SPQ=tan∠BOR,可求BR=,OR=2,設Q點的橫坐標是m,當x=m時y=m+4,∴SQ=m+3,PS=﹣m﹣1∴,解得m=﹣.當x=﹣時,y=,Q(﹣,).【點睛】本題考查二次函數綜合題、一次函數的應用、相似三角形的判定和性質、全等三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識,學會添加常用輔助線,構造特殊四邊形解決問題.18、(1)-1;(2)x1=2+,x2=2﹣【解析】
(1)按照實數的運算法則依次計算即可;(2)利用配方法解方程.【詳解】(1)原式=﹣2﹣1+2×=﹣1;(2)x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,即(x﹣2)2=2,∴x﹣2=±,∴x1=2+,x2=2﹣.【點睛】此題考查計算能力,(1)考查實數的計算,正確掌握絕對值的定義,零次冪的定義,特殊角度的三角函數值是解題的關鍵;(2)是解一元二次方程,能根據方程的特點選擇適合的解法是解題的關鍵.19、(1)證明見解析;(2)當t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】
(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進而表示出AEQ面積,利用二次函數的性質求出面積最大值,并求出此時Q的坐標即可;(3)當△AEQ的面積最大時,D、E、F都是中點,分兩種情形討論即可解決問題;【詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當0<t<6時,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當t=3時,△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點為BC的中點,線段EQ為△ABC的中位線,當AD為菱形的邊時,可得P1(3,0),P3(6,3),當AD為對角線時,P2(0,3),綜上所述,滿足條件的點P坐標為(3,0)或(6,3)或(0,3).【點睛】本題考查四邊形綜合題、等邊三角形的性質和判定、菱形的判定和性質、二次函數的性質等知識,解題的關鍵是學會構建二次函數解決最值問題,學會用分類討論的思想思考問題,屬于中考壓軸題.20、(1)證明見解析;(2)m=2或m=1.【解析】
(1)由△=(-m)2-4×1×(m2-1)=4>0即可得;(2)將x=2代入方程得到關于m的方程,解之可得.【詳解】(1)∵△=(﹣m)2﹣4×1×(m2﹣1)=m2﹣m2+4=4>0,∴方程有兩個不相等的實數根;(2)將x=2代入方程,得:4﹣2m+m2﹣1=0,整理,得:m2﹣8m+12=0,解得:m=2或m=1.【點睛】本題考查了根的判別式以及解一元二次方程,解題的關鍵是:(1)牢記“當△>0時,方程有兩個不相等的實數根”;(2)將x=2代入原方程求出m值.21、3+3.5【解析】
延長ED交BC延長線于點F,則∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4?tan37°可得答案.【詳解】如圖,延長ED交BC延長線于點F,則∠CFD=90°,∵tan∠DCF=i=,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,過點E作EG⊥AB于點G,則GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=4?tan37°,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年城堡工事拖拉戰(zhàn)行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年國際功能材料認證企業(yè)制定與實施新質生產力戰(zhàn)略研究報告
- 2025-2030年數字積木樂園行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年可折疊自行車行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年地質鉆孔智能控制系統(tǒng)企業(yè)制定與實施新質生產力戰(zhàn)略研究報告
- 2025-2030年抗疲勞保健飲料行業(yè)深度調研及發(fā)展戰(zhàn)略咨詢報告
- 2025-2030年手工拉面DIY體驗行業(yè)深度調研及發(fā)展戰(zhàn)略咨詢報告
- 農業(yè)訂單合同范本
- 制衣廠合同范本
- 乳膠設備出售合同范例
- 中國氫內燃機行業(yè)發(fā)展環(huán)境、市場運行格局及前景研究報告-智研咨詢(2024版)
- 開學季初三沖刺中考開學第一課為夢想加油課件
- 《自然保護區(qū)劃分》課件
- 2025年普通卷釘項目可行性研究報告
- 2025年建筑施工春節(jié)節(jié)后復工復產工作專項方案
- 學校食堂餐廳管理者食堂安全考試題附答案
- 中日合同范本
- T-CARM 002-2023 康復醫(yī)院建設標準
- 《康復按摩知識》課件
- 作文紙格子信紙
- 第八版神經病學配套課件-12-中樞神經系統(tǒng)感染性疾病
評論
0/150
提交評論