




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.據(jù)《關(guān)于“十三五”期間全面深入推進(jìn)教育信息化工作的指導(dǎo)意見(jiàn)》顯示,全國(guó)6000萬(wàn)名師生已通過(guò)“網(wǎng)絡(luò)學(xué)習(xí)空間”探索網(wǎng)絡(luò)條件下的新型教學(xué)、學(xué)習(xí)與教研模式,教育公共服務(wù)平臺(tái)基本覆蓋全國(guó)學(xué)生、教職工等信息基礎(chǔ)數(shù)據(jù)庫(kù),實(shí)施全國(guó)中小學(xué)教師信息技術(shù)應(yīng)用能力提升工程.則數(shù)字6000萬(wàn)用科學(xué)記數(shù)法表示為()A.6×105 B.6×106 C.6×107 D.6×1082.在六張卡片上分別寫(xiě)有,π,1.5,5,0,六個(gè)數(shù),從中任意抽取一張,卡片上的數(shù)為無(wú)理數(shù)的概率是()A. B. C. D.3.下列命題正確的是()A.內(nèi)錯(cuò)角相等B.-1是無(wú)理數(shù)C.1的立方根是±1D.兩角及一邊對(duì)應(yīng)相等的兩個(gè)三角形全等4.在實(shí)數(shù),有理數(shù)有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5.如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.6.正五邊形繞著它的中心旋轉(zhuǎn)后與它本身重合,最小的旋轉(zhuǎn)角度數(shù)是()A.36° B.54° C.72° D.108°7.點(diǎn)A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函數(shù)的圖象上,且x1<x2<0<x3,則y1、y2、y3的大小關(guān)系是()A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y38.下列幾何體是棱錐的是()A. B. C. D.9.點(diǎn)P(1,﹣2)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)10.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點(diǎn),P為弧BC上一動(dòng)點(diǎn)(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.43二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.化簡(jiǎn):x2-4x+4x12.若方程x2﹣2x﹣1=0的兩根分別為x1,x2,則x1+x2﹣x1x2的值為_(kāi)____.13.已知直線(xiàn)與拋物線(xiàn)交于A,B兩點(diǎn),則_______.14.如圖,在平面直角坐標(biāo)系中有一正方形AOBC,反比例函數(shù)經(jīng)過(guò)正方形AOBC對(duì)角線(xiàn)的交點(diǎn),半徑為()的圓內(nèi)切于△ABC,則k的值為_(kāi)_______.15.如圖,分別以正六邊形相間隔的3個(gè)頂點(diǎn)為圓心,以這個(gè)正六邊形的邊長(zhǎng)為半徑作扇形得到“三葉草”圖案,若正六邊形的邊長(zhǎng)為3,則“三葉草”圖案中陰影部分的面積為_(kāi)____(結(jié)果保留π)16.直線(xiàn)AB,BC,CA的位置關(guān)系如圖所示,則下列語(yǔ)句:①點(diǎn)A在直線(xiàn)BC上;②直線(xiàn)AB經(jīng)過(guò)點(diǎn)C;③直線(xiàn)AB,BC,CA兩兩相交;④點(diǎn)B是直線(xiàn)AB,BC,CA的公共點(diǎn),正確的有_____(只填寫(xiě)序號(hào)).三、解答題(共8題,共72分)17.(8分)求不等式組的整數(shù)解.18.(8分)如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長(zhǎng)線(xiàn)交于D.(1)求證:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半徑.19.(8分)如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對(duì)角線(xiàn)AC、BD交于點(diǎn)O,(1)如圖2,將△AOD沿DB平移,使點(diǎn)D與點(diǎn)O重合,求平移后的△A′BO與菱形ABCD重合部分的面積.(2)如圖3,將△A′BO繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)交AB于點(diǎn)E′,交BC于點(diǎn)F,①求證:BE′+BF=2,②求出四邊形OE′BF的面積.20.(8分)AB為⊙O直徑,C為⊙O上的一點(diǎn),過(guò)點(diǎn)C的切線(xiàn)與AB的延長(zhǎng)線(xiàn)相交于點(diǎn)D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點(diǎn),連接CE,BE,若BE=2,求CE的長(zhǎng).21.(8分)如圖,AB是⊙O的直徑,點(diǎn)E是AD上的一點(diǎn),∠DBC=∠BED.(1)請(qǐng)判斷直線(xiàn)BC與⊙O的位置關(guān)系,并說(shuō)明理由;(2)已知AD=5,CD=4,求BC的長(zhǎng).22.(10分)如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)點(diǎn)C的切線(xiàn)互相垂直,垂足為D,AB,DC的延長(zhǎng)線(xiàn)交于點(diǎn)E.(1)求證:AC平分∠DAB;(2)若BE=3,CE=3,求圖中陰影部分的面積.23.(12分)如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,在平面直角坐標(biāo)系中的位置如圖所示.(1)直接寫(xiě)出關(guān)于原點(diǎn)的中心對(duì)稱(chēng)圖形各頂點(diǎn)坐標(biāo):________________________;(2)將繞B點(diǎn)逆時(shí)針旋轉(zhuǎn),畫(huà)出旋轉(zhuǎn)后圖形.求在旋轉(zhuǎn)過(guò)程中所掃過(guò)的圖形的面積和點(diǎn)經(jīng)過(guò)的路徑長(zhǎng).24.在“優(yōu)秀傳統(tǒng)文化進(jìn)校園”活動(dòng)中,學(xué)校計(jì)劃每周二下午第三節(jié)課時(shí)間開(kāi)展此項(xiàng)活動(dòng),擬開(kāi)展活動(dòng)項(xiàng)目為:剪紙,武術(shù),書(shū)法,器樂(lè),要求七年級(jí)學(xué)生人人參加,并且每人只能參加其中一項(xiàng)活動(dòng).教務(wù)處在該校七年級(jí)學(xué)生中隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,并對(duì)此進(jìn)行統(tǒng)計(jì),繪制了如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).請(qǐng)解答下列問(wèn)題:請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;在參加“剪紙”活動(dòng)項(xiàng)目的學(xué)生中,男生所占的百分比是多少?若該校七年級(jí)學(xué)生共有500人,請(qǐng)估計(jì)其中參加“書(shū)法”項(xiàng)目活動(dòng)的有多少人?學(xué)校教務(wù)處要從這些被調(diào)查的女生中,隨機(jī)抽取一人了解具體情況,那么正好抽到參加“器樂(lè)”活動(dòng)項(xiàng)目的女生的概率是多少?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
將一個(gè)數(shù)寫(xiě)成的形式,其中,n是正數(shù),這種記數(shù)的方法叫做科學(xué)記數(shù)法,根據(jù)定義解答即可.【詳解】解:6000萬(wàn)=6×1.故選:C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法,當(dāng)所表示的數(shù)的絕對(duì)值大于1時(shí),n為正整數(shù),其值等于原數(shù)中整數(shù)部分的數(shù)位減去1,當(dāng)要表示的數(shù)的絕對(duì)值小于1時(shí),n為負(fù)整數(shù),其值等于原數(shù)中第一個(gè)非零數(shù)字前面所有零的個(gè)數(shù)的相反數(shù),正確掌握科學(xué)記數(shù)法中n的值的確定是解題的關(guān)鍵.2、B【解析】
無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù),無(wú)理數(shù)通常有以下三種形式:一是開(kāi)方開(kāi)不盡的數(shù),二是圓周率π,三是構(gòu)造的一些不循環(huán)的數(shù),如1.010010001……(兩個(gè)1之間0的個(gè)數(shù)一次多一個(gè)).然后用無(wú)理數(shù)的個(gè)數(shù)除以所有書(shū)的個(gè)數(shù),即可求出從中任意抽取一張,卡片上的數(shù)為無(wú)理數(shù)的概率.【詳解】∵這組數(shù)中無(wú)理數(shù)有,共2個(gè),∴卡片上的數(shù)為無(wú)理數(shù)的概率是.故選B.【點(diǎn)睛】本題考查了無(wú)理數(shù)的定義及概率的計(jì)算.3、D【解析】解:A.兩直線(xiàn)平行,內(nèi)錯(cuò)角相等,故A錯(cuò)誤;B.-1是有理數(shù),故B錯(cuò)誤;C.1的立方根是1,故C錯(cuò)誤;D.兩角及一邊對(duì)應(yīng)相等的兩個(gè)三角形全等,正確.故選D.4、D【解析】試題分析:根據(jù)有理數(shù)是有限小數(shù)或無(wú)限循環(huán)小數(shù),可得答案:是有理數(shù),故選D.考點(diǎn):有理數(shù).5、B【解析】
設(shè)以AB、AC為直徑作半圓交BC于D點(diǎn),連AD,如圖,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴陰影部分面積=半圓AC的面積+半圓AB的面積﹣△ABC的面積,=π?52﹣?16?6,=25π﹣1.故選B.6、C【解析】正五邊形繞著它的中心旋轉(zhuǎn)后與它本身重合,最小的旋轉(zhuǎn)角度數(shù)是=72度,故選C.7、A【解析】
作出反比例函數(shù)的圖象(如圖),即可作出判斷:∵-3<1,∴反比例函數(shù)的圖象在二、四象限,y隨x的增大而增大,且當(dāng)x<1時(shí),y>1;當(dāng)x>1時(shí),y<1.∴當(dāng)x1<x2<1<x3時(shí),y3<y1<y2.故選A.8、D【解析】分析:根據(jù)棱錐的概念判斷即可.A是三棱柱,錯(cuò)誤;B是圓柱,錯(cuò)誤;C是圓錐,錯(cuò)誤;D是四棱錐,正確.故選D.點(diǎn)睛:本題考查了立體圖形的識(shí)別,關(guān)鍵是根據(jù)棱錐的概念判斷.9、C【解析】關(guān)于y軸對(duì)稱(chēng)的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),由此可得P(1,﹣2)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)是(﹣1,﹣2),故選C.【點(diǎn)睛】本題考查了關(guān)于坐標(biāo)軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo),正確地記住關(guān)于坐標(biāo)軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特征是關(guān)鍵.關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特點(diǎn):縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù).10、D【解析】
如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據(jù)勾股定理得到PP′=2+82+(2【詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【點(diǎn)睛】本題考查了軸對(duì)稱(chēng)-最短距離問(wèn)題,相似三角形的判定和性質(zhì),勾股定理,正確的作出輔助線(xiàn)是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、﹣x-2x【解析】
直接利用分式的混合運(yùn)算法則即可得出.【詳解】原式====-x-2故答案為:-x-2【點(diǎn)睛】此題主要考查了分式的化簡(jiǎn),正確掌握運(yùn)算法則是解題關(guān)鍵.12、1【解析】根據(jù)題意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案為1.13、【解析】
將一次函數(shù)解析式代入二次函數(shù)解析式中,得出關(guān)于x的一元二次方程,根據(jù)根與系數(shù)的關(guān)系得出“x+x=-=,xx==-1”,將原代數(shù)式通分變形后代入數(shù)據(jù)即可得出結(jié)論.【詳解】將代入到中得,,整理得,,∴,,∴.【點(diǎn)睛】此題考查了二次函數(shù)的性質(zhì)和一次函數(shù)的性質(zhì),解題關(guān)鍵在于將一次函數(shù)解析式代入二次函數(shù)解析式14、1【解析】試題解析:設(shè)正方形對(duì)角線(xiàn)交點(diǎn)為D,過(guò)點(diǎn)D作DM⊥AO于點(diǎn)M,DN⊥BO于點(diǎn)N;設(shè)圓心為Q,切點(diǎn)為H、E,連接QH、QE.∵在正方形AOBC中,反比例函數(shù)y=經(jīng)過(guò)正方形AOBC對(duì)角線(xiàn)的交點(diǎn),∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四邊形HQEC是正方形,∵半徑為(1-2)的圓內(nèi)切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(1-2)2,∴QC2=18-32=(1-1)2,∴QC=1-1,∴CD=1-1+(1-2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=1,∴DN×NO=1,即:xy=k=1.【點(diǎn)睛】此題主要考查了正方形的性質(zhì)以及三角形內(nèi)切圓的性質(zhì)以及待定系數(shù)法求反比例函數(shù)解析式,根據(jù)已知求出CD的長(zhǎng)度,進(jìn)而得出DN×NO=1是解決問(wèn)題的關(guān)鍵.15、18π【解析】
根據(jù)“三葉草”圖案中陰影部分的面積為三個(gè)扇形面積的和,利用扇形面積公式解答即可.【詳解】解:∵正六邊形的內(nèi)角為=120°,∴扇形的圓心角為360°?120°=240°,∴“三葉草”圖案中陰影部分的面積為=18π,故答案為18π.【點(diǎn)睛】此題考查正多邊形與圓,關(guān)鍵是根據(jù)“三葉草”圖案中陰影部分的面積為三個(gè)扇形面積的和解答.16、③【解析】
根據(jù)直線(xiàn)與點(diǎn)的位置關(guān)系即可求解.【詳解】①點(diǎn)A在直線(xiàn)BC上是錯(cuò)誤的;②直線(xiàn)AB經(jīng)過(guò)點(diǎn)C是錯(cuò)誤的;③直線(xiàn)AB,BC,CA兩兩相交是正確的;④點(diǎn)B是直線(xiàn)AB,BC,CA的公共點(diǎn)是錯(cuò)誤的.故答案為③.【點(diǎn)睛】本題考查了直線(xiàn)、射線(xiàn)、線(xiàn)段,關(guān)鍵是熟練掌握直線(xiàn)、射線(xiàn)、線(xiàn)段的定義.三、解答題(共8題,共72分)17、-1,-1,0,1,1【解析】分析:先求出不等式組的解集,然后求出整數(shù)解.詳解:,由不等式①,得:x≥﹣1,由不等式②,得:x<3,故原不等式組的解集是﹣1≤x<3,∴不等式組的整數(shù)解是:﹣1、﹣1、0、1、1.點(diǎn)睛:本題考查了解一元一次不等式的整數(shù)解,解答本題的關(guān)鍵是明確解一元一次不等式組的方法.18、(1)見(jiàn)解析;(2)【解析】分析:(1)首先連接CO,根據(jù)CD與⊙O相切于點(diǎn)C,可得:∠OCD=90°;然后根據(jù)AB是圓O的直徑,可得:∠ACB=90°,據(jù)此判斷出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先設(shè)CD為x,則AB=32x,OC=OB=34x,用x表示出OD、BD;然后根據(jù)△ADC∽△CDB,可得:ACCB=CDBD,據(jù)此求出CB的值是多少,即可求出⊙O半徑是多少.詳解:(1)證明:如圖,連接CO,,∵CD與⊙O相切于點(diǎn)C,∴∠OCD=90°,∵AB是圓O的直徑,∴∠ACB=90°,∴∠ACO=∠BCD,∵∠ACO=∠CAD,∴∠CAD=∠BCD,在△ADC和△CDB中,∴△ADC∽△CDB.(2)解:設(shè)CD為x,則AB=x,OC=OB=x,∵∠OCD=90°,∴OD===x,∴BD=OD﹣OB=x﹣x=x,由(1)知,△ADC∽△CDB,∴=,即,解得CB=1,∴AB==,∴⊙O半徑是.點(diǎn)睛:此題主要考查了切線(xiàn)的性質(zhì)和應(yīng)用,以及勾股定理的應(yīng)用,要熟練掌握.19、(1);(2)①2,②【解析】分析:(1)重合部分是等邊三角形,計(jì)算出邊長(zhǎng)即可.①證明:在圖3中,取AB中點(diǎn)E,證明≌,即可得到,②由①知,在旋轉(zhuǎn)過(guò)程60°中始終有≌四邊形的面積等于=.詳解:(1)∵四邊形為菱形,∴∴為等邊三角形∴∵AD//∴∴為等邊三角形,邊長(zhǎng)∴重合部分的面積:①證明:在圖3中,取AB中點(diǎn)E,由上題知,∴又∵∴≌,∴∴,②由①知,在旋轉(zhuǎn)過(guò)程60°中始終有≌∴四邊形的面積等于=.點(diǎn)睛:屬于四邊形的綜合題,考查了菱形的性質(zhì),全等三角形的判定與性質(zhì)等,熟練掌握每個(gè)知識(shí)點(diǎn)是解題的關(guān)鍵.20、(2)見(jiàn)解析;(2)2+.【解析】
(2)連接OC,根據(jù)圓周角定理、切線(xiàn)的性質(zhì)得到∠ACO=∠DCB,根據(jù)CA=CD得到∠CAD=∠D,證明∠COB=∠CBO,根據(jù)等角對(duì)等邊證明;
(2)連接AE,過(guò)點(diǎn)B作BF⊥CE于點(diǎn)F,根據(jù)勾股定理計(jì)算即可.【詳解】(2)證明:連接OC,∵AB為⊙O直徑,∴∠ACB=90°,∵CD為⊙O切線(xiàn)∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)連接AE,過(guò)點(diǎn)B作BF⊥CE于點(diǎn)F,∵E是AB中點(diǎn),∴,∴AE=BE=2.∵AB為⊙O直徑,∴∠AEB=90°.∴∠ECB=∠BAE=45°,,∴.∴CF=BF=2.∴.∴.【點(diǎn)睛】本題考查的是切線(xiàn)的性質(zhì)、圓周角定理、勾股定理,掌握?qǐng)A的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑是解題的關(guān)鍵.21、(1)BC與⊙O相切;理由見(jiàn)解析;(2)BC=6【解析】試題分析:(1)BC與⊙O相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB為直徑可得∠ADB=90°,從而可得∠CBO=90°,繼而可得BC與⊙O相切(2)由AB為直徑可得∠ADB=90°,從而可得∠BDC=90°,由BC與⊙O相切,可得∠CBO=90°,從而可得∠BDC=∠CBO,可得ΔABC~ΔBDC,所以得BCCD=ACBC,得試題解析:(1)BC與⊙O相切;∵BD=BD,∴∠BAD=∠BED,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB為直徑,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴點(diǎn)B在⊙O上,∴BC與(2)∵AB為直徑,∴∠ADB=90°,∴∠BDC=90°,∵BC與⊙O相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴ΔABC~ΔBDC,∴BCCD=ACBC,∴BC考點(diǎn):1.切線(xiàn)的判定與性質(zhì);2.相似三角形的判定與性質(zhì);3.勾股定理.22、(1)證明見(jiàn)解析;(2)【解析】
(1)連接OC,如圖,利用切線(xiàn)的性質(zhì)得CO⊥CD,則AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,從而得到∠DAC=∠CAO;(2)設(shè)⊙O半徑為r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用銳角三角函數(shù)的定義計(jì)算出∠COE=60°,然后根據(jù)扇形的面積公式,利用S陰影=S△COE﹣S扇形COB進(jìn)行計(jì)算即可.【詳解】解:(1)連接OC,如圖,∵CD與⊙O相切于點(diǎn)E,∴CO⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)設(shè)⊙O半徑為r,在Rt△OEC中,∵OE2+EC2=OC2,∴r2+27=(r+3)2,解得r=3,∴OC=3,OE=6,∴cos∠COE=,∴∠COE=60°,∴S陰影=S△COE﹣S扇形COB=?3?3﹣.【點(diǎn)睛】本題考查了切線(xiàn)的性質(zhì):圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑.若出現(xiàn)圓的切線(xiàn),必連過(guò)切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.簡(jiǎn)記作:見(jiàn)切點(diǎn),連半徑,見(jiàn)垂直.也考查了圓周角定理和扇形的面積公式.23、(1),,;(2)作圖見(jiàn)解析,面積,.【解析】
(1)由在平面直角坐標(biāo)系中的位置可得A、B、C
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 車(chē)庫(kù)房屋合同協(xié)議書(shū)范本
- 2025秋五年級(jí)上冊(cè)語(yǔ)文(統(tǒng)編版)-【25 古人談讀書(shū)】作業(yè)課件
- 搭用電合同協(xié)議書(shū)范本
- 運(yùn)輸司機(jī)合同協(xié)議書(shū)模板
- 盆景買(mǎi)賣(mài)合同協(xié)議書(shū)
- 解除掛靠工程合同協(xié)議書(shū)
- 乙方商業(yè)租房合同協(xié)議書(shū)
- 取消租車(chē)合同協(xié)議書(shū)范本
- 基因編輯技術(shù)在農(nóng)業(yè)上的應(yīng)用
- 街舞計(jì)劃書(shū)文案
- 2025屆廣東省中山六校高三二模語(yǔ)文試題(含答案與解析)
- 智能建造基礎(chǔ)考試題及答案
- 2024年蘇教版三年級(jí)下冊(cè)數(shù)學(xué)全冊(cè)教案及教學(xué)反思
- 承運(yùn)商KPI考核管理辦法2024年2月定稿
- 2025年中國(guó)石油化工行業(yè)市場(chǎng)發(fā)展前景及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- T-ZZB 3669-2024 嵌裝滾花銅螺母
- 醫(yī)務(wù)人員廉潔從業(yè)培訓(xùn)課件
- 第十八屆“地球小博士”全國(guó)地理知識(shí)科普競(jìng)賽題庫(kù)(附答案)
- 《智慧醫(yī)院建設(shè)指南》
- 新《民法典》知識(shí)競(jìng)賽題庫(kù)附答案
- 《食管胃結(jié)合部癌》課件
評(píng)論
0/150
提交評(píng)論