版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,函數(shù)在區(qū)間內(nèi)沒有最值,給出下列四個結(jié)論:①在上單調(diào)遞增;②③在上沒有零點;④在上只有一個零點.其中所有正確結(jié)論的編號是()A.②④ B.①③ C.②③ D.①②④2.已知,且,則的值為()A. B. C. D.3.關(guān)于函數(shù),有下列三個結(jié)論:①是的一個周期;②在上單調(diào)遞增;③的值域為.則上述結(jié)論中,正確的個數(shù)為()A. B. C. D.4.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計樣本在、內(nèi)的數(shù)據(jù)個數(shù)共有()A. B. C. D.5.如圖所示,三國時代數(shù)學家在《周脾算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一個內(nèi)角為,若向弦圖內(nèi)隨機拋擲200顆米粒(大小忽略不計,?。瑒t落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.20 B.27 C.54 D.646.已知函數(shù),,若存在實數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.7.已知復數(shù)(為虛數(shù)單位)在復平面內(nèi)對應的點的坐標是()A. B. C. D.8.秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入的值為2,則輸出的值為A. B. C. D.9.雙曲線的漸近線方程為()A. B.C. D.10.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,指數(shù)學.某校國學社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種11.某大學計算機學院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領(lǐng)域的語音識別、人臉識別,數(shù)據(jù)分析、機器學習、服務器開發(fā)五個方向展開研究,且每個方向均有研究生學習,其中劉澤同學學習人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種12.已知的展開式中第項與第項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,直角坐標系中網(wǎng)格小正方形的邊長為1,若向量、、滿足,則實數(shù)的值為_______.14.若x,y滿足,則的最小值為________.15.設(shè)變量,滿足約束條件,則目標函數(shù)的最小值為______.16.的展開式中,的系數(shù)是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(是參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求直線與曲線的普通方程,并求出直線的傾斜角;(2)記直線與軸的交點為是曲線上的動點,求點的最大距離.18.(12分)在銳角中,分別是角的對邊,,,且.(1)求角的大?。唬?)求函數(shù)的值域.19.(12分)在以為頂點的五面體中,底面為菱形,,,,二面角為直二面角.(Ⅰ)證明:;(Ⅱ)求二面角的余弦值.20.(12分)在直角坐標系中,圓的參數(shù)方程為(為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求圓的極坐標方程;(2)直線的極坐標方程是,射線與圓的交點為、,與直線的交點為,求線段的長.21.(12分)已知函數(shù),.(1)求函數(shù)在處的切線方程;(2)當時,證明:對任意恒成立.22.(10分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
先根據(jù)函數(shù)在區(qū)間內(nèi)沒有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調(diào)性和零點情況得解.【詳解】因為函數(shù)在區(qū)間內(nèi)沒有最值.所以,或解得或.又,所以.令.可得.且在上單調(diào)遞減.當時,,且,所以在上只有一個零點.所以正確結(jié)論的編號②④故選:A.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),考查函數(shù)的零點問題,意在考查學生對這些知識的理解掌握水平.2.A【解析】
由及得到、,進一步得到,再利用兩角差的正切公式計算即可.【詳解】因為,所以,又,所以,,所以.故選:A.【點睛】本題考查三角函數(shù)誘導公式、二倍角公式以及兩角差的正切公式的應用,考查學生的基本計算能力,是一道基礎(chǔ)題.3.B【解析】
利用三角函數(shù)的性質(zhì),逐個判斷即可求出.【詳解】①因為,所以是的一個周期,①正確;②因為,,所以在上不單調(diào)遞增,②錯誤;③因為,所以是偶函數(shù),又是的一個周期,所以可以只考慮時,的值域.當時,,在上單調(diào)遞增,所以,的值域為,③錯誤;綜上,正確的個數(shù)只有一個,故選B.【點睛】本題主要考查三角函數(shù)的性質(zhì)應用.4.B【解析】
計算出樣本在的數(shù)據(jù)個數(shù),再減去樣本在的數(shù)據(jù)個數(shù)即可得出結(jié)果.【詳解】由題意可知,樣本在的數(shù)據(jù)個數(shù)為,樣本在的數(shù)據(jù)個數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個數(shù)為.故選:B.【點睛】本題考查利用頻數(shù)分布表計算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.5.B【解析】
設(shè)大正方體的邊長為,從而求得小正方體的邊長為,設(shè)落在小正方形內(nèi)的米粒數(shù)大約為,利用概率模擬列方程即可求解。【詳解】設(shè)大正方體的邊長為,則小正方體的邊長為,設(shè)落在小正方形內(nèi)的米粒數(shù)大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應用,考查計算能力,屬于基礎(chǔ)題。6.A【解析】
根據(jù)實數(shù)滿足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當且僅當,即當時,等號成立,∴,∴.故選:A.【點睛】本題考查了導數(shù)在求函數(shù)最值中的應用,由基本不等式求函數(shù)的最值,存在性成立問題的解法,屬于中檔題.7.A【解析】
直接利用復數(shù)代數(shù)形式的乘除運算化簡,求得的坐標得出答案.【詳解】解:,在復平面內(nèi)對應的點的坐標是.故選:A.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.8.C【解析】
由題意,模擬程序的運行,依次寫出每次循環(huán)得到的,的值,當時,不滿足條件,跳出循環(huán),輸出的值.【詳解】解:初始值,,程序運行過程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循環(huán),輸出的值為其中①②①—②得.故選:.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應用,正確依次寫出每次循環(huán)得到,的值是解題的關(guān)鍵,屬于基礎(chǔ)題.9.A【解析】
將雙曲線方程化為標準方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點睛】本題主要考查了雙曲線的標準方程,雙曲線的簡單性質(zhì)的應用.10.C【解析】
根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰有3類排法,再考慮兩者的順序,有種,剩余的3門全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門課程相鄰時,可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門全排列,安排在剩下的3個位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點睛】本題主要考查了排列、組合的應用,其中解答中認真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.11.B【解析】
將人臉識別方向的人數(shù)分成:有人、有人兩種情況進行分類討論,結(jié)合捆綁計算出不同的分配方法數(shù).【詳解】當人臉識別方向有2人時,有種,當人臉識別方向有1人時,有種,∴共有360種.故選:B【點睛】本小題主要考查簡單排列組合問題,考查分類討論的數(shù)學思想方法,屬于基礎(chǔ)題.12.D【解析】因為的展開式中第4項與第8項的二項式系數(shù)相等,所以,解得,所以二項式中奇數(shù)項的二項式系數(shù)和為.考點:二項式系數(shù),二項式系數(shù)和.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)圖示分析出、、的坐標表示,然后根據(jù)坐標形式下向量的數(shù)量積為零計算出的取值.【詳解】由圖可知:,所以,又因為,所以,所以.故答案為:.【點睛】本題考查向量的坐標表示以及坐標形式下向量的數(shù)量積運算,難度較易.已知,若,則有.14.5【解析】
先作出可行域,再做直線,平移,找到使直線在y軸上截距最小的點,代入即得。【詳解】作出不等式組表示的平面區(qū)域,如圖,令,則,作出直線,平移直線,由圖可得,當直線經(jīng)過C點時,直線在y軸上的截距最小,由,可得,因此的最小值為.故答案為:4【點睛】本題考查不含參數(shù)的線性規(guī)劃問題,是基礎(chǔ)題。15.-8【解析】
通過約束條件,畫出可行域,將問題轉(zhuǎn)化為直線在軸截距最大的問題,通過圖像解決.【詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當過時,在軸截距最大本題正確結(jié)果:【點睛】本題考查線性規(guī)劃中的型最值的求解問題,關(guān)鍵在于將所求最值轉(zhuǎn)化為在軸截距的問題.16.【解析】
先將原式展開成,發(fā)現(xiàn)中不含,故只研究后面一項即可得解.【詳解】,依題意,只需求中的系數(shù),是.故答案為:-40【點睛】本題考查二項式定理性質(zhì),關(guān)鍵是先展開再利用排列組合思想解決,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),,直線的傾斜角為(2)【解析】
(1)由公式消去參數(shù)得普通方程,由公式可得直角坐標方程后可得傾斜角;(2)求出直線與軸交點,用參數(shù)表示點坐標,求出,利用三角函數(shù)的性質(zhì)可得最大值.【詳解】(1)由,消去得的普通方程是:由,得,將代入上式,化簡得直線的傾斜角為(2)在曲線上任取一點,直線與軸的交點的坐標為則當且僅當時,取最大值.【點睛】本題考查參數(shù)方程與普通方程的互化,考查極坐標方程與直角坐標方程的互化,屬于基礎(chǔ)題.求兩點間距離的最值時,用參數(shù)方程設(shè)點的坐標可把問題轉(zhuǎn)化為三角函數(shù)問題.18.(1);(2)【解析】
(1)由向量平行的坐標表示、正弦定理邊化角和兩角和差正弦公式可化簡求得,進而得到;(2)利用兩角和差余弦公式、二倍角和輔助角公式化簡函數(shù)為,根據(jù)的范圍可確定的范圍,結(jié)合正弦函數(shù)圖象可確定所求函數(shù)的值域.【詳解】(1),,由正弦定理得:,即,,,,又,.(2)在銳角中,,..,,,,函數(shù)的值域為.【點睛】本題考查三角恒等變換、解三角形和三角函數(shù)性質(zhì)的綜合應用問題;涉及到共線向量的坐標表示、利用三角恒等變換公式化簡求值、正弦定理邊化角的應用、正弦型函數(shù)值域的求解等知識.19.(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)連接交于點,取中點,連結(jié),證明平面得到答案.(Ⅱ)分別以為軸建立如圖所示的空間直角坐標系,平面的法向量為,平面的法向量為,計算夾角得到答案.【詳解】(Ⅰ)連接交于點,取中點,連結(jié)因為為菱形,所以.因為,所以.因為二面角為直二面角,所以平面平面,且平面平面,所以平面所以因為所以是平行四邊形,所以.所以,所以,所以平面,又平面,所以.(Ⅱ)由(Ⅰ)可知兩兩垂直,分別以為軸建立如圖所示的空間直角坐標系.設(shè)設(shè)平面的法向量為,由,取.平面的法向量為.所以二面角余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象能力.20.(1)(2)【解析】
(1)首先將參數(shù)方程轉(zhuǎn)化為普通方程再根據(jù)公式化為極坐標方程即可;(2)設(shè),,由,即可求出,則計算可得;【詳解】解:(1)圓的參數(shù)方程(為參數(shù))可化為,∴,即圓的極坐標方程為.(2)設(shè),由,解得.設(shè),由,解得.∵,∴.【點睛】本題考查了利用極坐標方程求曲線的交點弦長,考查了推理能力與計算能力,屬于中檔題.21.(1)(2)見解析【解析】
(1)因為,可得,即可求得答案;(2)要證對任意恒成立,即證對任意恒成立.設(shè),,當時,,即可求得答案.【詳解】(1),,,函數(shù)在處的切線方程為.(2)要證對任意恒成立.即證對任意恒成立.設(shè),,當時,,,令,解得,當時,,函數(shù)在上單調(diào)遞減;當時,,函數(shù)在上單調(diào)遞增.,,,當時,對任意恒成立,即當時,對任意恒成立.【點睛】本題主要考查了求曲線的切線方程和求證不等式恒成立問題,解題關(guān)鍵是掌握由導數(shù)求切線方程的解法和根據(jù)導數(shù)求證不等式恒成立的方法,考查了分析能力和計算能力,屬于難題.22.(1);(2).【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版廣東省土地估價師協(xié)會土地估價師職業(yè)資格認證合同3篇
- 科技孵化器在創(chuàng)新創(chuàng)業(yè)中的支持與服務
- 2024藥店倉儲物流人員勞動合同范本:藥店倉儲合同3篇
- 二零二五年度高標準大棚建設(shè)與配套設(shè)施合同3篇
- 二零二五年度大連離婚協(xié)議書專業(yè)起草與備案合同4篇
- 個性化電商倉儲物流自動化升級合同(2024版)3篇
- 2025年度汽車安全帶保養(yǎng)與更換服務合同4篇
- 2025年度拆遷房買賣合同書(含環(huán)保節(jié)能要求)4篇
- 二零二五年度打樁施工合同履約保證金協(xié)議3篇
- 2025年度汽車報廢回收處理合同示范4篇
- 2024-2030年中國海泡石產(chǎn)業(yè)運行形勢及投資規(guī)模研究報告
- 動物醫(yī)學類專業(yè)生涯發(fā)展展示
- 2024年同等學力申碩英語考試真題
- 消除“艾梅乙”醫(yī)療歧視-從我做起
- 非遺文化走進數(shù)字展廳+大數(shù)據(jù)與互聯(lián)網(wǎng)系創(chuàng)業(yè)計劃書
- 科普知識進社區(qū)活動總結(jié)與反思
- 現(xiàn)金日記賬模板(帶公式)
- 消化內(nèi)科??票O(jiān)測指標匯總分析
- 混凝土結(jié)構(gòu)工程施工質(zhì)量驗收規(guī)范
- 肝性腦病患者的護理措施課件
- 大跨度斜拉橋上部結(jié)構(gòu)施工技術(shù)(圖文并茂)
評論
0/150
提交評論