貴州省黔西南自治州興仁市鳳凰中學(xué)2021-2022學(xué)年高三下第一次測(cè)試數(shù)學(xué)試題含解析_第1頁
貴州省黔西南自治州興仁市鳳凰中學(xué)2021-2022學(xué)年高三下第一次測(cè)試數(shù)學(xué)試題含解析_第2頁
貴州省黔西南自治州興仁市鳳凰中學(xué)2021-2022學(xué)年高三下第一次測(cè)試數(shù)學(xué)試題含解析_第3頁
貴州省黔西南自治州興仁市鳳凰中學(xué)2021-2022學(xué)年高三下第一次測(cè)試數(shù)學(xué)試題含解析_第4頁
貴州省黔西南自治州興仁市鳳凰中學(xué)2021-2022學(xué)年高三下第一次測(cè)試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓+=1(a>b>0)與直線交于A,B兩點(diǎn),焦點(diǎn)F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.2.已知函數(shù)滿足=1,則等于()A.- B. C.- D.3.我國古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻(xiàn).這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期.某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的概率為()A. B. C. D.4.已知數(shù)列為等差數(shù)列,為其前項(xiàng)和,,則()A.7 B.14 C.28 D.845.甲、乙兩名學(xué)生的六次數(shù)學(xué)測(cè)驗(yàn)成績(百分制)的莖葉圖如圖所示.①甲同學(xué)成績的中位數(shù)大于乙同學(xué)成績的中位數(shù);②甲同學(xué)的平均分比乙同學(xué)的平均分高;③甲同學(xué)的平均分比乙同學(xué)的平均分低;④甲同學(xué)成績的方差小于乙同學(xué)成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④6.已知全集,集合,則=()A. B.C. D.7.設(shè),,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件8.已知x,y滿足不等式組,則點(diǎn)所在區(qū)域的面積是()A.1 B.2 C. D.9.函數(shù)(且)的圖象可能為()A. B. C. D.10.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.11.設(shè)集合,,則().A. B.C. D.12.函數(shù)在的圖象大致為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知四棱錐的底面ABCD是邊長為2的正方形,且.若四棱錐P-ABCD的五個(gè)頂點(diǎn)在以4為半徑的同一球面上,當(dāng)PA最長時(shí),則______________;四棱錐P-ABCD的體積為______________.14.在中,角,,的對(duì)邊分別為,,,若,且,則面積的最大值為________.15.已知函數(shù)是偶函數(shù),直線與函數(shù)的圖象自左向右依次交于四個(gè)不同點(diǎn)A,B,C,D.若AB=BC,則實(shí)數(shù)t的值為_________.16.已知集合U={1,3,5,9},A={1,3,9},B={1,9},則?U(A∪B)=________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右焦點(diǎn)為,直線被稱作為橢圓的一條準(zhǔn)線,點(diǎn)在橢圓上(異于橢圓左、右頂點(diǎn)),過點(diǎn)作直線與橢圓相切,且與直線相交于點(diǎn).(1)求證:.(2)若點(diǎn)在軸的上方,當(dāng)?shù)拿娣e最小時(shí),求直線的斜率.附:多項(xiàng)式因式分解公式:18.(12分)若函數(shù)為奇函數(shù),且時(shí)有極小值.(1)求實(shí)數(shù)的值與實(shí)數(shù)的取值范圍;(2)若恒成立,求實(shí)數(shù)的取值范圍.19.(12分)某社區(qū)服務(wù)中心計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶5元,售價(jià)每瓶7元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:攝氏度℃)有關(guān).如果最高氣溫不低于25,需求量為600瓶;如果最高氣溫位于區(qū)間,需求量為500瓶;如果最高氣溫低于20,需求量為300瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:最高氣溫天數(shù)414362763以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;(2)設(shè)六月份一天銷售這種酸奶的利潤為(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為(單位:瓶)時(shí),的數(shù)學(xué)期望的取值范圍?20.(12分)已知函數(shù).⑴當(dāng)時(shí),求函數(shù)的極值;⑵若存在與函數(shù),的圖象都相切的直線,求實(shí)數(shù)的取值范圍.21.(12分)已知的內(nèi)角的對(duì)邊分別為,且滿足.(1)求角的大??;(2)若的面積為,求的周長的最小值.22.(10分)如圖,設(shè)點(diǎn)為橢圓的右焦點(diǎn),圓過且斜率為的直線交圓于兩點(diǎn),交橢圓于點(diǎn)兩點(diǎn),已知當(dāng)時(shí),(1)求橢圓的方程.(2)當(dāng)時(shí),求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

聯(lián)立直線與橢圓方程求出交點(diǎn)A,B兩點(diǎn),利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因?yàn)?,,由平面向量垂直的坐?biāo)表示可得,,因?yàn)椋詀2-c2=ac,兩邊同時(shí)除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點(diǎn)睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運(yùn)算求解能力和知識(shí)遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、常考題型.2.C【解析】

設(shè)的最小正周期為,可得,則,再根據(jù)得,又,則可求出,進(jìn)而可得.【詳解】解:設(shè)的最小正周期為,因?yàn)?,所以,所以,所以,又,所以?dāng)時(shí),,,因?yàn)椋淼?,因?yàn)?,,,則所以.故選:C.【點(diǎn)睛】本題考查三角形函數(shù)的周期性和對(duì)稱性,考查學(xué)生分析能力和計(jì)算能力,是一道難度較大的題目.3.D【解析】

利用列舉法,從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【詳解】《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期.記這5部專著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時(shí)期.從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的概率為.故選D.【點(diǎn)睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時(shí),找準(zhǔn)基本事件個(gè)數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個(gè)數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本亊件的探求.在找基本事件個(gè)數(shù)時(shí),一定要按順序逐個(gè)寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.4.D【解析】

利用等差數(shù)列的通項(xiàng)公式,可求解得到,利用求和公式和等差中項(xiàng)的性質(zhì),即得解【詳解】,解得..故選:D【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、求和公式和等差中項(xiàng),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.5.A【解析】

由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學(xué)成績的中位數(shù)為,乙同學(xué)成績的中位數(shù)為,故①錯(cuò)誤;,,則,故②錯(cuò)誤,③正確;顯然甲同學(xué)的成績更集中,即波動(dòng)性更小,所以方差更小,故④正確,故選:A【點(diǎn)睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).6.D【解析】

先計(jì)算集合,再計(jì)算,最后計(jì)算.【詳解】解:,,.故選:.【點(diǎn)睛】本題主要考查了集合的交,補(bǔ)混合運(yùn)算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.7.A【解析】

根據(jù)對(duì)數(shù)的運(yùn)算分別從充分性和必要性去證明即可.【詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【點(diǎn)睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.8.C【解析】

畫出不等式表示的平面區(qū)域,計(jì)算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點(diǎn)睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運(yùn)算能力,屬于??碱}.9.D【解析】因?yàn)?,故函?shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點(diǎn):1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.10.C【解析】

作出三棱錐的實(shí)物圖,然后補(bǔ)成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球?yàn)橥粋€(gè)球,然后計(jì)算出矩形的外接圓直徑,利用公式可計(jì)算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實(shí)物圖如下圖所示:將其補(bǔ)成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點(diǎn)睛】本題考查三棱錐外接球的表面積,解題時(shí)要結(jié)合三視圖作出三棱錐的實(shí)物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進(jìn)行計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.11.D【解析】

根據(jù)題意,求出集合A,進(jìn)而求出集合和,分析選項(xiàng)即可得到答案.【詳解】根據(jù)題意,則故選:D【點(diǎn)睛】此題考查集合的交并集運(yùn)算,屬于簡單題目,12.A【解析】

因?yàn)?,所以排除C、D.當(dāng)從負(fù)方向趨近于0時(shí),,可得.故選A.二、填空題:本題共4小題,每小題5分,共20分。13.90°【解析】

易得平面PAD,P點(diǎn)在與BA垂直的圓面內(nèi)運(yùn)動(dòng),顯然,PA是圓的直徑時(shí),PA最長;將四棱錐補(bǔ)形為長方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點(diǎn)在與BA垂直的圓面內(nèi)運(yùn)動(dòng),易知,當(dāng)P、、A三點(diǎn)共線時(shí),PA達(dá)到最長,此時(shí),PA是圓的直徑,則;又,所以平面ABCD,此時(shí)可將四棱錐補(bǔ)形為長方體,其體對(duì)角線為,底面邊長為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).【點(diǎn)睛】本題四棱錐外接球有關(guān)的問題,考查學(xué)生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.14.【解析】

利用正弦定理將角化邊得到,再由余弦定理得到,根據(jù)同角三角函數(shù)的基本關(guān)系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:∵在中,,∴,∴,∴,∴.∵,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴,∴面積的最大值為.故答案為:【點(diǎn)睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式的應(yīng)用,以及基本不等式的應(yīng)用,屬于中檔題.15.【解析】

由是偶函數(shù)可得時(shí)恒有,根據(jù)該恒等式即可求得,,的值,從而得到,令,可解得,,三點(diǎn)的橫坐標(biāo),根據(jù)可列關(guān)于的方程,解出即可.【詳解】解:因?yàn)槭桥己瘮?shù),所以時(shí)恒有,即,所以,所以,解得,,;所以;由,即,解得;故,.由,即,解得.故,.因?yàn)?,所以,即,解得,故答案為:.【點(diǎn)睛】本題考查函數(shù)奇偶性的性質(zhì)及二次函數(shù)的圖象、性質(zhì),考查學(xué)生的計(jì)算能力,屬中檔題.16.{5}【解析】易得A∪B=A={1,3,9},則?U(A∪B)={5}.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】

(1)由得令可得,進(jìn)而得到,同理,利用數(shù)量積坐標(biāo)計(jì)算即可;(2),分,兩種情況討論即可.【詳解】(1)證明:點(diǎn)的坐標(biāo)為.聯(lián)立方程,消去后整理為有,可得,,.可得點(diǎn)的坐標(biāo)為.當(dāng)時(shí),可求得點(diǎn)的坐標(biāo)為,,.有,故有.(2)若點(diǎn)在軸上方,因?yàn)?,所以有,由?)知①因?yàn)闀r(shí).由(1)知,由函數(shù)單調(diào)遞增,可得此時(shí).②當(dāng)時(shí),由(1)知令由,故當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增:當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,又由,故函數(shù)的最小值,函數(shù)取最小值時(shí),可求得.由①②知,若點(diǎn)在軸上方,當(dāng)?shù)拿娣e最小時(shí),直線的斜率為.【點(diǎn)睛】本題考查直線與橢圓的位置關(guān)系,涉及到分類討論求函數(shù)的最值,考查學(xué)生的運(yùn)算求解能力,是一道難題.18.(1),;(2)【解析】

(1)由奇函數(shù)可知在定義域上恒成立,由此建立方程,即可求出實(shí)數(shù)的值;對(duì)函數(shù)進(jìn)行求導(dǎo),,通過導(dǎo)數(shù)求出,若,則恒成立不符合題意,當(dāng),可證明,此時(shí)時(shí)有極小值.(2)可知,進(jìn)而得到,令,通過導(dǎo)數(shù)可知在上為單調(diào)減函數(shù),由可得,從而可求實(shí)數(shù)的取值范圍.【詳解】(1)由函數(shù)為奇函數(shù),得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當(dāng)時(shí),;當(dāng)時(shí),,故在上遞減,在上遞增,若,則恒成立,單調(diào)遞增,無極值點(diǎn);所以,解得,取,則又函數(shù)的圖象在區(qū)間上連續(xù)不間斷,故由函數(shù)零點(diǎn)存在性定理知在區(qū)間上,存在為函數(shù)的零點(diǎn),為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構(gòu)造函數(shù),所以,當(dāng)時(shí),,即恒成立,故在上為單調(diào)減函數(shù),其中.則可轉(zhuǎn)化為,故,由,設(shè),可得當(dāng)時(shí),則在上遞增,故.綜上,的取值范圍是.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了奇函數(shù)的定義,考查了轉(zhuǎn)化的思想.對(duì)于恒成立的問題,常轉(zhuǎn)化為求的最小值,使;對(duì)于恒成立的問題,常轉(zhuǎn)化為求的最大值,使.19.(1)見解析;(2)【解析】

(1)X的可能取值為300,500,600,結(jié)合題意及表格數(shù)據(jù)計(jì)算對(duì)應(yīng)概率,即得解;(2)由題意得,分,及,分別得到y(tǒng)與n的函數(shù)關(guān)系式,得到對(duì)應(yīng)的分布列,分析即得解.【詳解】(1)由題意:X的可能取值為300,500,600故:六月份這種酸奶一天的需求量(單位:瓶)的分布列為300500600(2)由題意得.1°.當(dāng)時(shí),利潤此時(shí)利潤的分布列為.2.時(shí),利潤此時(shí)利潤的分布列為.綜上的數(shù)學(xué)期望的取值范圍是.【點(diǎn)睛】本題考查了函數(shù)與概率統(tǒng)計(jì)綜合,考查了學(xué)生綜合分析,數(shù)據(jù)處理,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20.(1)當(dāng)時(shí),函數(shù)取得極小值為,無極大值;(2)【解析】試題分析:(1),通過求導(dǎo)分析,得函數(shù)取得極小值為,無極大值;(2),所以,通過求導(dǎo)討論,得到的取值范圍是.試題解析:(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論