第五章彎曲應(yīng)力_第1頁(yè)
第五章彎曲應(yīng)力_第2頁(yè)
第五章彎曲應(yīng)力_第3頁(yè)
第五章彎曲應(yīng)力_第4頁(yè)
第五章彎曲應(yīng)力_第5頁(yè)
已閱讀5頁(yè),還剩35頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第五章彎曲應(yīng)力

§5-1梁彎曲正應(yīng)力§5-2慣性矩計(jì)算§5-3梁彎曲剪應(yīng)力§5-4梁彎曲時(shí)的強(qiáng)度計(jì)算§5-5塑性彎曲的概念§5-6提高梁抗彎能力的措施§5-1梁彎曲正應(yīng)力

一、梁彎曲時(shí)橫截面上的應(yīng)力分布

一般情況下,梁受外力而彎曲時(shí),其橫截面上同時(shí)有彎矩和剪力兩個(gè)內(nèi)力。彎矩由分布于橫截面上的法向內(nèi)力元σdA所組成,剪力由切向內(nèi)力元τdA組成,故橫截面上同時(shí)存在正應(yīng)力和剪應(yīng)力。σdAτdAQM當(dāng)梁較長(zhǎng)時(shí),正應(yīng)力是決定梁是否破壞的主要因素,剪應(yīng)力則是次要因素。二、彎曲分類

PPaaBACDBACD+?BACD+PPPa梁AC、BD段的橫截面上既有剪力又有彎矩,稱為剪切彎曲。CD段梁的橫截面上只有彎矩而無(wú)剪力,稱為純彎曲。此處僅研究純彎曲時(shí)梁橫截面上正應(yīng)力與彎矩的關(guān)系。三、純彎曲實(shí)驗(yàn)

1.準(zhǔn)備

ABCDEFGH在梁側(cè)面畫(huà)上AB、CD、EF、GH四條直線,且AB∥CD、EF∥GH。在梁兩端對(duì)梁施加純彎矩M。ABCDEFGHMMABCDEFGH2.現(xiàn)象

變形后AB、CD仍為直線,但二者不再平行;直線EF、GH變成曲線且EF變短,GH變長(zhǎng);曲線EF、GH間的距離幾乎沒(méi)有變化;橫截面上部分沿厚度方向變寬,下部分變窄。3.假定

梁的任意一個(gè)橫截面,如果在變形之前是平面,在變形后仍為平面——平截面假定。梁上部分纖維受壓而下部分纖維受拉,中間一層纖維既不受拉也不受壓,這一層叫中性層或中性面。中性層與橫截面的交線叫中性軸。梁彎曲變形時(shí)橫截面繞中性軸轉(zhuǎn)動(dòng)。梁的縱向纖維之間無(wú)擠壓力作用,故梁的縱向纖維只受拉伸或壓縮作用。梁中的縱向應(yīng)變和橫截面上的正應(yīng)力沿橫截面厚度方向不變,而只與高度方向的位置有關(guān),故梁內(nèi)處在同一高度的一層纖維的正應(yīng)力相等。中性層厚度高度長(zhǎng)度縱向?qū)ΨQ軸橫截面中性軸梁的材料服從虎克定律,在受拉和壓時(shí),彈性模量是一樣的。梁的橫截面尺寸能保證梁在受彎曲時(shí)不致翹曲。梁的長(zhǎng)度比橫截面度量尺寸大得多(長(zhǎng)梁),平截面假定僅適應(yīng)于長(zhǎng)梁,若梁長(zhǎng)度與橫截面度量尺寸的比值小于5,由彈性力學(xué)知,平截面假定就不適用。4.限制條件

先考慮等截面梁,梁的橫截面至少有一個(gè)對(duì)稱軸,即梁至少有一個(gè)對(duì)稱面,并且所有外力都在這個(gè)平面內(nèi)。這樣保證了對(duì)稱平面內(nèi)的纖維變形后仍在這個(gè)平面內(nèi)。因此,中性軸必與縱向?qū)ΨQ軸垂直。平截面假定一般不適用于曲梁??v向纖維之間無(wú)擠壓力假定一般不適用于剪切彎曲。四、梁彎曲正應(yīng)力

同圓軸扭轉(zhuǎn)的應(yīng)力公式推導(dǎo)過(guò)程一樣,從變形幾何關(guān)系、物理關(guān)系和靜力學(xué)關(guān)系三方面考慮。1.變形幾何關(guān)系

MMO1O2O1O2yyρdφabdxa'b'設(shè)為中性層,ρ為其曲率半徑。變形后變形前縱向線應(yīng)變?yōu)閺澢鷷r(shí),梁橫截面上各點(diǎn)的縱向線應(yīng)變?chǔ)排c該點(diǎn)至中性軸的距離y成正比。在同一橫截面上ρ為常數(shù)。ρ2.物理關(guān)系(應(yīng)力應(yīng)變關(guān)系)

橫截面上任一點(diǎn)處的正應(yīng)力與該點(diǎn)到中性軸的距離y成正比,在距中性軸等距離的各點(diǎn)上正應(yīng)力相等。此時(shí)由于中性軸具體位置還未確定,故到中性軸的距離y還無(wú)法度量。同時(shí),曲率半徑也未知,無(wú)法求出。3.靜力關(guān)系

取純彎曲梁的一個(gè)橫截面,建立坐標(biāo)系O-xyz,y軸為縱向?qū)ΨQ軸,z軸為中性軸,其具體位置待定。σdAyOxyzMM內(nèi)力元σdA的合力即軸力

為零因故由中值定理知—橫截面圖形對(duì)z軸靜矩。故—橫截面圖形形心坐標(biāo)。即橫截面形心在z軸上,故中性軸必通過(guò)橫截面形心。內(nèi)力元σdA對(duì)z軸之矩總和構(gòu)成橫截面上的彎矩M令—橫截面對(duì)z軸的慣性矩,代表橫截面一個(gè)幾何性質(zhì)。則—抗彎剛度,愈大,梁愈不易變形。將上式代入應(yīng)力應(yīng)變關(guān)系式得:σ

—橫截面上任意一點(diǎn)的正應(yīng)力;M—橫截面上的彎矩;Iz—橫截面對(duì)中性軸z的慣性矩。

y—橫截面上任意一點(diǎn)到中性軸的距離;令——抗彎截面模量則zOxyMMσmaxσmax4.結(jié)論

橫截面上的正應(yīng)力σ與該截面上的彎矩M成正比,與橫截面的慣性矩Iz成反比,正應(yīng)力的數(shù)值沿橫截面高度成線性分布。在中性軸上正應(yīng)力為零,離中性軸愈遠(yuǎn)正應(yīng)力愈大,在橫截面上下邊緣取得σmax

。σmaxσmaxMM§5-2慣性矩計(jì)算

一、簡(jiǎn)單截面的慣性矩

矩形截面

ydyyOzbh圓形與圓環(huán)形截面

因y、z軸均通過(guò)圓截面直徑,對(duì)圓環(huán)形截面故DOyzρ(z,y)Dd二、組合截面的慣性矩平行移軸公式

組合橫截面對(duì)某一軸的慣性矩可視為其各個(gè)組成部分即單一圖形對(duì)同一軸的慣性矩之代數(shù)和。平行移軸公式

設(shè)任意形狀的橫截面,其面積為A,y軸、z軸通過(guò)形心(稱為形心軸),對(duì)z軸的慣性矩為Iz?,F(xiàn)有z1軸與z軸平行,y1軸與y軸平行,形心C在坐標(biāo)系O-y1

z1中的坐標(biāo)為(b,a)。橫截面對(duì)任一軸的慣性矩等于它對(duì)平行于該軸的形心軸的慣性矩加上截面面積與兩軸間距離平方的乘積。同理知

:dA(z,y)C(b,a)Oy1z1yz例題

【例5-1】求T字形截面的慣性矩。尺寸單位為cm?!窘狻?)求T字形截面中性軸z軸即形心坐標(biāo)yC。將截面分成I、II兩部分。在坐標(biāo)系O-yz′中,形心坐標(biāo)為2)求各組合部分對(duì)中性軸z之慣性矩:23621IIICICIICzI(yIC=-5)z(yC=-3)zII(yIIC=-1)z′yO6【例5-2】求圖示陰影部分對(duì)中性軸z軸的慣性矩。【解】因故lDyzOdI2zI1z顯然,陰影部分對(duì)中性軸y軸的慣性矩為:一、矩形截面梁

ybhτmaxOyzτQQ—橫截面上剪力;Iz—整個(gè)橫截面對(duì)中性軸z軸的慣性矩;b—橫截面在所求剪應(yīng)力處的寬度;Sz(y)—橫截面上剪應(yīng)力τ所在橫線至截面邊緣部分的面積對(duì)中性軸z的靜矩。故剪應(yīng)力沿截面高度成拋物線分布;在上、下邊緣,剪應(yīng)力為零;在中性軸上,剪應(yīng)力達(dá)最大值,它為平均剪應(yīng)力的1.5倍。*§5-3梁彎曲剪應(yīng)力

二、工字形截面梁

工字形截面梁由上、下翼緣和垂直腹板組成。由于腹板為狹長(zhǎng)矩形,故假定其上各點(diǎn)處的剪應(yīng)力平行于腹板側(cè)邊并沿腹板厚度均勻分布。腹板上y處剪應(yīng)力為Sz(y)—橫截面上剪應(yīng)力τ所在橫線至截面邊緣部分的面積對(duì)中性軸z的靜矩。Iz—整個(gè)工字形截面對(duì)中性軸z軸的慣性矩;腹板上剪應(yīng)力為:hHbdzyOτmax

腹板上的剪應(yīng)力沿腹板高度按拋物線變化。yτmin

τmin

當(dāng)y=0時(shí),當(dāng)y=h/2時(shí),當(dāng)d≤b時(shí),τmax≈τmin

,可視為均勻分布。翼緣上剪應(yīng)力基本上沿水平方向,其值很小可不考慮。由對(duì)各種不同形狀的截面上的剪應(yīng)力的討論知,最大剪應(yīng)力一般位于最大剪力截面的中性軸上,其計(jì)算公式可統(tǒng)一為:Szmax—中性軸一邊的橫截面面積對(duì)中性軸的靜矩;Iz—整個(gè)橫截面對(duì)中性軸的慣性矩;b—橫截面在所求剪應(yīng)力處的寬度;Qmax—全梁的最大剪力。*三、圓形、薄壁圓環(huán)形截面梁

1.圓形截面

對(duì)于圓形截面梁,選一直線mn與中性軸平行,根據(jù)剪應(yīng)力互等定理,m點(diǎn)及n點(diǎn)的剪應(yīng)力τ均與邊界相切。除直線mn與y軸相交處的剪應(yīng)力平行于剪力Q外,該線上其它各點(diǎn)的剪應(yīng)力的方向均與y軸相傾斜。自m點(diǎn)和n點(diǎn)作圓周的切線交y軸于C點(diǎn)。

OzyCτxyτxzτ假定mn線上各點(diǎn)剪應(yīng)力的方向也都沿著自該點(diǎn)到C點(diǎn)所作的連線方向。將各點(diǎn)剪應(yīng)力τ分解成平行于Q的τxy和垂直于Q的τxz

,且設(shè)離中性軸等距離各點(diǎn)處剪應(yīng)力在Q方向的分量τxy均相等,于是可用矩形截面梁剪應(yīng)力計(jì)算公式來(lái)計(jì)算τxy

,因?qū)τ讦觴y來(lái)說(shuō),符合矩形截面梁剪應(yīng)力的兩個(gè)假定。mn因故當(dāng)y=0時(shí),圓形橫截面上的最大剪應(yīng)力發(fā)生在中性軸上,且為平均剪應(yīng)力的4/3倍。對(duì)于橫截面對(duì)稱于y軸的其它形狀如橢圓、等腰梯形等,同樣可用對(duì)圓形截面所作的假設(shè)來(lái)計(jì)算。該近似結(jié)果與精確解相比在最大值處誤差約為4℅。bξm'n'OyzRφαmnydηητmax

2.圓環(huán)形截面

對(duì)于薄壁圓環(huán)形截面,若壁厚t遠(yuǎn)小于圓環(huán)的平均半徑R,則可認(rèn)為橫截面上的剪應(yīng)力沿厚度t均勻分布,方向與圓周相切,在中性軸上各點(diǎn)的剪應(yīng)力就平行于Q且沿厚度均勻分布。圓環(huán)形截面梁上最大剪應(yīng)力為平均剪應(yīng)力的2倍。tROyzτmax最大剪應(yīng)力為:τmax§5-4梁彎曲時(shí)的強(qiáng)度計(jì)算

一般等截面直梁,在剪切彎曲時(shí),彎矩最大的橫截面的上下邊緣處存在最大正應(yīng)力,在剪力最大的橫截面的中性軸處存在最大剪應(yīng)力。因此,在梁的強(qiáng)度計(jì)算時(shí),必須同時(shí)滿足正應(yīng)力和剪應(yīng)力兩個(gè)強(qiáng)度條件。一、正應(yīng)力強(qiáng)度計(jì)算

1.強(qiáng)度條件

—梁的最大彎矩;—梁橫截面的抗彎截面模量;[σ]—材料的許用正應(yīng)力,對(duì)薄壁型鋼一般可用軸向拉伸時(shí)的許用應(yīng)力;對(duì)于實(shí)心鋼梁,可略高一些。2.強(qiáng)度條件的用途

強(qiáng)度校核設(shè)計(jì)截面求許可載荷3.強(qiáng)度條件的細(xì)化

若且橫截面也對(duì)稱于中性軸,即,則強(qiáng)度條件為:若而橫截面對(duì)稱于中性軸,即,則強(qiáng)度條件為:若而橫截面不對(duì)稱于中性軸,,則強(qiáng)度條件為:若而橫截面也不對(duì)稱于中性軸,即,則強(qiáng)度條件為:

若確定最大彎矩,則取兩個(gè)彎矩中的最小值作為結(jié)果。二、剪應(yīng)力強(qiáng)度計(jì)算

1.強(qiáng)度條件:

Qmax—梁橫截面上的最大剪應(yīng)力;Szmax—中性軸一側(cè)的截面面積對(duì)中性軸的靜矩;[τ]—材料的許用剪應(yīng)力。b—橫截面在所求剪應(yīng)力處的寬度Iz—整個(gè)橫截面對(duì)中性軸的慣性矩;2.應(yīng)用場(chǎng)合

在強(qiáng)度計(jì)算中,必須同時(shí)滿足正應(yīng)力和剪應(yīng)力兩個(gè)強(qiáng)度條件。通常是先按正應(yīng)力強(qiáng)度條件選擇橫截面的尺寸和形狀,必要時(shí)再按剪應(yīng)力強(qiáng)度條件進(jìn)行校核。一般對(duì)以下幾種情況進(jìn)行剪應(yīng)力強(qiáng)度校核。若梁較短或載荷很靠近支座,這時(shí)梁上的最大彎矩Mmax可能很小,而剪應(yīng)力卻相對(duì)較大,如果此時(shí)按Mmax來(lái)設(shè)計(jì)截面尺寸就不一定滿足剪應(yīng)力強(qiáng)度條件;對(duì)于一些組合梁,若其腹板寬度b相對(duì)于截面高度很小時(shí),橫截面上可能產(chǎn)生較大剪應(yīng)力;對(duì)于木梁等,順纖維方向抗剪能力較差,由剪應(yīng)力互等定理知在中性層上也有τmax作用,因此也可能沿中性層發(fā)生剪切破壞,故此時(shí)需校核剪切強(qiáng)度;對(duì)于象工字形截面短梁,特別當(dāng)Mmax和Qmax在同一截面上時(shí),其主應(yīng)力很可能超過(guò)最大正應(yīng)力,此時(shí)可選擇適當(dāng)?shù)膹?qiáng)度理論校核梁的主應(yīng)力。對(duì)于用鋼材作成的梁,在計(jì)算時(shí),以最大剪應(yīng)力理論(第3強(qiáng)度理論)和能量理論(第4強(qiáng)度理論)提出的強(qiáng)度條件來(lái)校核。即梁中任意一點(diǎn)的應(yīng)力(σ,τ)滿足:三、例題

【例5-3】礦車車軸如圖示。P=10kN,a=0.6m,許用應(yīng)力[σ]=100MPa,圓軸的直徑d=76mm。PPaalAB1)求支座A、B的反力;2)畫(huà)彎矩圖;3)校核車軸的強(qiáng)度。RARB【解】1)求支座反力2)畫(huà)彎矩圖3)校核強(qiáng)度?6kN?m【例5-4】一T字形截面鑄鐵梁如圖示。已知F1=8kN,F(xiàn)2=20kN,a=0.6m;截面慣性矩Iz=5.33×106(mm4);材料抗拉強(qiáng)度σbt=240MPa,抗壓強(qiáng)度σbc=600MPa。不考慮剪應(yīng)力,取安全系數(shù)n=4,校核梁的強(qiáng)度。ABCDaaaF1F2RARB1001002020y1=80y2=40z【解】1)求支座反力2)畫(huà)彎矩圖DACB+?4.8kN?m3.6kN?m3)確定許用應(yīng)力4)校核危險(xiǎn)截面A、C的強(qiáng)度A截面上邊緣最大拉應(yīng)力A截面下邊緣最大壓應(yīng)力C截面上邊緣最大壓應(yīng)力C截面下邊緣最大拉應(yīng)力整個(gè)梁滿足強(qiáng)度要求。A截面壓拉C截面拉壓*§5-5塑性彎曲的概念

MMσσsMMσsMsMs彈性狀態(tài)彈塑性狀態(tài)此時(shí)的彎矩Ms稱為極限彎矩。塑性狀態(tài)式中—中性軸一側(cè)截面面積對(duì)中性軸的靜矩。令—塑性抗彎截面系數(shù)許用彎矩按許用彎矩確定的強(qiáng)度條件為:對(duì)矩形截面:對(duì)圓形截面:故*§5-6提高梁抗彎能力的措施

彎曲正應(yīng)力是控制梁的主要因素,故彎曲正應(yīng)力強(qiáng)度條件:是設(shè)計(jì)梁的主要依據(jù)。要提高梁的承載能力,需從兩方面考慮:合理安排梁的受力情況,以降低Mmax;合理選擇截面形狀,以提高Wz。適當(dāng)調(diào)整支座位置P3a3a+3Pa/2調(diào)整前調(diào)整后P2a2aaa?PaPa+P4a一、合理安排梁的受力情況1.適當(dāng)調(diào)整載荷或支座位置可減小梁的最大彎矩。適當(dāng)調(diào)整載荷位置Pl/2l/2+Pl/4+5Pl/36Pl/65l/6調(diào)整前調(diào)整后2.若能適當(dāng)分散集中載荷,也能減小梁的最大彎矩。Pl/2l/2+Pl/4q=P/ll+Pl/8+Pl/8集中載荷均布載荷增加附梁l/2l/4l/4Pl/2二、合理選擇截面

梁的合理截面是:用最小的截面面積A,使其有更大的抗彎截面模量Wz??捎帽戎礧z/A來(lái)衡量截面的經(jīng)濟(jì)程度,該比值越大,所采用的截面越經(jīng)濟(jì)合理。而在選擇矩形截面梁時(shí),豎放又比橫放經(jīng)濟(jì)合理。在相同抗彎截面模量Wz時(shí),工字形截面梁較矩形截面梁和圓形截面梁更經(jīng)濟(jì)合理。在選擇合理截面時(shí),還應(yīng)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論