版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“幻方”最早記載于我國(guó)公元前500年的春秋時(shí)期《大戴禮》中.“階幻方”是由前個(gè)正整數(shù)組成的—個(gè)階方陣,其各行各列及兩條對(duì)角線所含的個(gè)數(shù)之和(簡(jiǎn)稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.452.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯(cuò)誤,則下列結(jié)論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了3.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點(diǎn)F的坐標(biāo)為(c,0),點(diǎn)A是第一象限內(nèi)雙曲線漸近線上的一點(diǎn),O為坐標(biāo)原點(diǎn),滿足|OA|=A.2 B.2 C.2334.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.5.設(shè)函數(shù)恰有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.6.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為3,則可輸入的實(shí)數(shù)值的個(gè)數(shù)為()A.1 B.2 C.3 D.47.復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.設(shè)過拋物線上任意一點(diǎn)(異于原點(diǎn))的直線與拋物線交于兩點(diǎn),直線與拋物線的另一個(gè)交點(diǎn)為,則()A. B. C. D.9.將一塊邊長(zhǎng)為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.1210.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則()A. B. C. D.11.已知向量,,則與的夾角為()A. B. C. D.12.已知拋物線的焦點(diǎn)與雙曲線的一個(gè)焦點(diǎn)重合,且拋物線的準(zhǔn)線被雙曲線截得的線段長(zhǎng)為,那么該雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____14.如圖,養(yǎng)殖公司欲在某湖邊依托互相垂直的湖岸線、圍成一個(gè)三角形養(yǎng)殖區(qū).為了便于管理,在線段之間有一觀察站點(diǎn),到直線,的距離分別為8百米、1百米,則觀察點(diǎn)到點(diǎn)、距離之和的最小值為______________百米.15.的展開式中所有項(xiàng)的系數(shù)和為______,常數(shù)項(xiàng)為______.16.若,則=____,=___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是拋物線上上一點(diǎn),且點(diǎn)的橫坐標(biāo)為,.(1)求拋物線的方程;(2)過點(diǎn)的直線與拋物線交于、兩點(diǎn),過點(diǎn)且與直線垂直的直線與準(zhǔn)線交于點(diǎn),設(shè)的中點(diǎn)為,若、、四點(diǎn)共圓,求直線的方程.18.(12分)已知橢圓的左右焦點(diǎn)分別是,點(diǎn)在橢圓上,滿足(1)求橢圓的標(biāo)準(zhǔn)方程;(2)直線過點(diǎn),且與橢圓只有一個(gè)公共點(diǎn),直線與的傾斜角互補(bǔ),且與橢圓交于異于點(diǎn)的兩點(diǎn),與直線交于點(diǎn)(介于兩點(diǎn)之間),是否存在直線,使得直線,,的斜率按某種排序能構(gòu)成等比數(shù)列?若能,求出的方程,若不能,請(qǐng)說理由.19.(12分)在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計(jì)線上學(xué)習(xí)時(shí)間不少于5小時(shí)419線上學(xué)習(xí)時(shí)間不足5小時(shí)合計(jì)45(1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;(2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);②若將頻率視為概率,從全校高三該次檢測(cè)數(shù)學(xué)成績(jī)不少于120分的學(xué)生中隨機(jī)抽取20人,求這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)20.(12分)如圖,在四棱錐中,側(cè)棱底面,,,,是棱的中點(diǎn).(1)求證:平面;(2)若,點(diǎn)是線段上一點(diǎn),且,求直線與平面所成角的正弦值.21.(12分)設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為過焦點(diǎn)且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過點(diǎn).(1)求的值及該圓的方程;(2)設(shè)為上任意一點(diǎn),過點(diǎn)作的切線,切點(diǎn)為,證明:.22.(10分)選修4-4:坐標(biāo)系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;(2)已知點(diǎn)、的極坐標(biāo)分別為和,直線與曲線相交于,兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
計(jì)算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點(diǎn)睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.2、C【解析】
假設(shè)若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯(cuò)誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯(cuò)誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯(cuò)誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點(diǎn)睛】本題考查了邏輯推理能力,屬基礎(chǔ)題.3、C【解析】
計(jì)算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,F(xiàn)c,0,故Mc,故選:C.【點(diǎn)睛】本題考查了雙曲線離心率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.4、C【解析】
由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因?yàn)榍胰庵鶠橹比庵?,∴∴面,∴,又,,∴,∴,解?故選C【點(diǎn)睛】考查直三棱柱的定義,線面垂直的性質(zhì),考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.5、C【解析】
恰有兩個(gè)極值點(diǎn),則恰有兩個(gè)不同的解,求出可確定是它的一個(gè)解,另一個(gè)解由方程確定,令通過導(dǎo)數(shù)判斷函數(shù)值域求出方程有一個(gè)不是1的解時(shí)t應(yīng)滿足的條件.【詳解】由題意知函數(shù)的定義域?yàn)椋?因?yàn)榍∮袃蓚€(gè)極值點(diǎn),所以恰有兩個(gè)不同的解,顯然是它的一個(gè)解,另一個(gè)解由方程確定,且這個(gè)解不等于1.令,則,所以函數(shù)在上單調(diào)遞增,從而,且.所以,當(dāng)且時(shí),恰有兩個(gè)極值點(diǎn),即實(shí)數(shù)的取值范圍是.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,函數(shù)與方程的應(yīng)用,屬于中檔題.6、C【解析】試題分析:根據(jù)題意,當(dāng)時(shí),令,得;當(dāng)時(shí),令,得,故輸入的實(shí)數(shù)值的個(gè)數(shù)為1.考點(diǎn):程序框圖.7、D【解析】
由復(fù)數(shù)除法運(yùn)算求出,再寫出其共軛復(fù)數(shù),得共軛復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo).得結(jié)論.【詳解】,,對(duì)應(yīng)點(diǎn)為,在第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查共軛復(fù)數(shù)的概念,考查復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)的運(yùn)算法則是解題關(guān)鍵.8、C【解析】
畫出圖形,將三角形面積比轉(zhuǎn)為線段長(zhǎng)度比,進(jìn)而轉(zhuǎn)為坐標(biāo)的表達(dá)式。寫出直線方程,再聯(lián)立方程組,求得交點(diǎn)坐標(biāo),最后代入坐標(biāo),求得三角形面積比.【詳解】作圖,設(shè)與的夾角為,則中邊上的高與中邊上的高之比為,,設(shè),則直線,即,與聯(lián)立,解得,從而得到面積比為.故選:【點(diǎn)睛】解決本題主要在于將面積比轉(zhuǎn)化為線段長(zhǎng)的比例關(guān)系,進(jìn)而聯(lián)立方程組求解,是一道不錯(cuò)的綜合題.9、D【解析】
推導(dǎo)出,且,,,設(shè)中點(diǎn)為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設(shè)中點(diǎn)為,則平面,∴,∴,解得.故選:D【點(diǎn)睛】本題考查三視圖和錐體的體積計(jì)算公式的應(yīng)用,屬于中檔題.10、B【解析】
設(shè),根據(jù)復(fù)數(shù)的幾何意義得到、的關(guān)系式,即可得解;【詳解】解:設(shè)∵,∴,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義的應(yīng)用,屬于基礎(chǔ)題.11、B【解析】
由已知向量的坐標(biāo),利用平面向量的夾角公式,直接可求出結(jié)果.【詳解】解:由題意得,設(shè)與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點(diǎn)睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.12、A【解析】
由拋物線的焦點(diǎn)得雙曲線的焦點(diǎn),求出,由拋物線準(zhǔn)線方程被曲線截得的線段長(zhǎng)為,由焦半徑公式,聯(lián)立求解.【詳解】解:由拋物線,可得,則,故其準(zhǔn)線方程為,拋物線的準(zhǔn)線過雙曲線的左焦點(diǎn),.拋物線的準(zhǔn)線被雙曲線截得的線段長(zhǎng)為,,又,,則雙曲線的離心率為.故選:.【點(diǎn)睛】本題考查拋物線的性質(zhì)及利用過雙曲線的焦點(diǎn)的弦長(zhǎng)求離心率.弦過焦點(diǎn)時(shí),可結(jié)合焦半徑公式求解弦長(zhǎng).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
化簡(jiǎn)得,利用周期即可求出答案.【詳解】解:,∴函數(shù)的最小正周期為6,∴,,故答案為:.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.14、【解析】
建系,將直線用方程表示出來,再用參數(shù)表示出線段的長(zhǎng)度,最后利用導(dǎo)數(shù)來求函數(shù)最小值.【詳解】以為原點(diǎn),所在直線分別作為軸,建立平面直角坐標(biāo)系,則.設(shè)直線,即,則,所以,所以,,則,則,當(dāng)時(shí),,則單調(diào)遞減,當(dāng)時(shí),,則單調(diào)遞增,所以當(dāng)時(shí),最短,此時(shí).故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的實(shí)際應(yīng)用,屬于中檔題.15、3-260【解析】
(1)令求得所有項(xiàng)的系數(shù)和;(2)先求出展開式中的常數(shù)項(xiàng)與含的系數(shù),再求展開式中的常數(shù)項(xiàng).【詳解】將代入,得所有項(xiàng)的系數(shù)和為3.因?yàn)榈恼归_式中含的項(xiàng)為,的展開式中含常數(shù)項(xiàng),所以的展開式中的常數(shù)項(xiàng)為.故答案為:3;-260【點(diǎn)睛】本題考查利用二項(xiàng)展開式的通項(xiàng)公式解決二項(xiàng)展開式的特殊項(xiàng)問題,屬于基礎(chǔ)題.16、12821【解析】
令,求得的值.利用展開式的通項(xiàng)公式,求得的值.【詳解】令,得.展開式的通項(xiàng)公式為,當(dāng)時(shí),為,即.【點(diǎn)睛】本小題主要考查二項(xiàng)式展開式的通項(xiàng)公式,考查賦值法求解二項(xiàng)式系數(shù)有關(guān)問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由拋物線的定義可得,即可求出,從而得到拋物線方程;(2)設(shè)直線的方程為,代入,得.設(shè),,列出韋達(dá)定理,表示出中點(diǎn)的坐標(biāo),若、、、四點(diǎn)共圓,再結(jié)合,得,則即可求出參數(shù),從而得解;【詳解】解:(1)由拋物線定義,得,解得,所以拋物線的方程為.(2)設(shè)直線的方程為,代入,得.設(shè),,則,.由,,得,所以.因?yàn)橹本€的斜率為,所以直線的斜率為,則直線的方程為.由解得.若、、、四點(diǎn)共圓,再結(jié)合,得,則,解得,所以直線的方程為.【點(diǎn)睛】本題考查拋物線的定義及性質(zhì)的應(yīng)用,直線與拋物線綜合問題,屬于中檔題.18、(1);(2)不能,理由見解析【解析】
(1)設(shè),則,由此即可求出橢圓方程;(2)設(shè)直線的方程為,聯(lián)立直線與橢圓的方程可求得,則直線斜率為,設(shè)其方程為,聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理可得關(guān)于對(duì)稱,可求得,假設(shè)存在直線滿足題意,設(shè),可得,由此可得答案.【詳解】解:(1)設(shè),則,,所以橢圓方程為;(2)設(shè)直線的方程為,與聯(lián)立得,∴,因?yàn)閮芍本€的傾斜角互補(bǔ),所以直線斜率為,設(shè)直線的方程為,聯(lián)立整理得,,所以關(guān)于對(duì)稱,由正弦定理得,因?yàn)?所以,由上得,假設(shè)存在直線滿足題意,設(shè),按某種排列成等比數(shù)列,設(shè)公比為,則,所以,則此時(shí)直線與平行或重合,與題意不符,所以不存在滿足題意的直線.【點(diǎn)睛】本題主要考查直線與橢圓的位置關(guān)系,考查計(jì)算能力與推理能力,屬于難題.19、(1)填表見解析;有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”(2)①詳見解析②期望;方差【解析】
(1)完成列聯(lián)表,代入數(shù)據(jù)即可判斷;(2)利用分層抽樣可得的取值,進(jìn)而得到概率,列出分布列;根據(jù)分析知,計(jì)算出期望與方差.【詳解】(1)分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計(jì)線上學(xué)習(xí)時(shí)間不少于5小時(shí)15419線上學(xué)習(xí)時(shí)間不足5小時(shí)101626合計(jì)252045有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”.(2)①由分層抽樣知,需要從不足120分的學(xué)生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學(xué)生中隨機(jī)抽取1人,此人每周上線時(shí)間不少于5小時(shí)的概率為,設(shè)從全校不少于120分的學(xué)生中隨機(jī)抽取20人,這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)為,則,故,.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)與離散型隨機(jī)變量的分布列、數(shù)學(xué)期望與方差的計(jì)算問題,屬于基礎(chǔ)題.20、(1)證明見解析;(2)【解析】
(1)的中點(diǎn),連接,,證明四邊形是平行四邊形可得,故而平面;(2)以為原點(diǎn)建立空間坐標(biāo)系,求出平面的法向量,計(jì)算與的夾角的余弦值得出答案.【詳解】(1)證明:取的中點(diǎn),連接,,,分別是,的中點(diǎn),,,又,,,,四邊形是平行四邊形,,又平面,平面,平面.(2)解:,,又,故,以為原點(diǎn),以,,為坐標(biāo)軸建立空間直角坐標(biāo)系,則,0,,,0,,,2,,,0,,,2,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024建筑工程地勘合同正規(guī)范本
- 專用藥品配送代理合同2024年范本版B版
- 2025高考生物備考說課稿:胚胎工程
- 福建省南平市武夷山第三中學(xué)2022年高三數(shù)學(xué)理上學(xué)期期末試題含解析
- 福建省南平市吳屯中學(xué)2020-2021學(xué)年高三數(shù)學(xué)文期末試題含解析
- 福建省南平市松溪縣職業(yè)中學(xué)高二化學(xué)聯(lián)考試卷含解析
- 2024版飛機(jī)購(gòu)銷合同
- 專利與商標(biāo)權(quán)歸屬合同范本2024一
- 母愛市場(chǎng)之策略洞察
- 外籍人才中介合同(2篇)
- 2022年廣東省中考物理試題試題(含答案+解析)
- 北京市豐臺(tái)區(qū)2024屆高三下學(xué)期二模試題 數(shù)學(xué) 含解析
- 質(zhì)量保證措施
- 耕地占補(bǔ)平衡系統(tǒng)課件
- 2024年三年級(jí)品社下冊(cè)《鄰居家的小伙伴》教案2 蘇教版
- 交易平臺(tái)保證金協(xié)議書
- 中醫(yī)師承跟師筆記50篇
- 醫(yī)院OA辦公系統(tǒng)技術(shù)需求
- 文物保護(hù)中的智能材料應(yīng)用
- 2024政銀企合作協(xié)議范本
- QBT 2010-1994 振蕩拉軟機(jī)行業(yè)標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論