(??碱})人教版高中數(shù)學(xué)必修第二冊第二單元《復(fù)數(shù)》測試卷(答案解析)_第1頁
(??碱})人教版高中數(shù)學(xué)必修第二冊第二單元《復(fù)數(shù)》測試卷(答案解析)_第2頁
(??碱})人教版高中數(shù)學(xué)必修第二冊第二單元《復(fù)數(shù)》測試卷(答案解析)_第3頁
(??碱})人教版高中數(shù)學(xué)必修第二冊第二單元《復(fù)數(shù)》測試卷(答案解析)_第4頁
(??碱})人教版高中數(shù)學(xué)必修第二冊第二單元《復(fù)數(shù)》測試卷(答案解析)_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

一、選題1.已知復(fù)數(shù)滿足

z

z的數(shù)的應(yīng)點的軌跡是()A.個圓

B.段

C.個

.個圓2.

i(1

()A.

1i

B.

3131iC.iD.i2223.設(shè)i為數(shù)位,復(fù)數(shù)滿

i

,則復(fù)數(shù)的共軛復(fù)數(shù)等于()A.1-iB.4.設(shè)R則“x”是復(fù)A.充分必要條件C.分不必要條件

C.D.-1+i)B.要不充分條件.不充分也不必要條件5.若復(fù)數(shù)A.i

(miB.

是純虛數(shù),其中m是數(shù),則2iC.

1

=(.

6.已知i

為虛數(shù)單位,復(fù)數(shù)

32i2

,則以下命題為真命題的是()A.的共軛復(fù)數(shù)為

4i

B.z的部為

75C.

.在復(fù)平面內(nèi)對應(yīng)的點在第一象限7.復(fù)數(shù)

滿足

i)

,則

()1A.58.設(shè)

z

3i

,i

B.1是虛數(shù)單位,則

1C.5的虛部為()

A.

B..D.9.復(fù)數(shù)

z

21

,i

是虛數(shù)單位,則下列結(jié)論正確的是A.

5

B.

的共軛復(fù)數(shù)為

i2C.

的實部與虛部之和為1

在復(fù)平面內(nèi)的對應(yīng)點位于第一象限10.復(fù)平面內(nèi),復(fù)數(shù)

對應(yīng)的點位于()A.第一象限

B.二象限

C.第三象限

.四象限11.?dāng)?shù)

的實部和虛部分別為a,b則

a

()

A.B.C.D.12.于給定的復(fù)數(shù),若滿足

iz

的復(fù)數(shù)

對應(yīng)的點的軌跡是橢圓,則A.

的取值范圍是()17

B.

C.

二、填題13.果復(fù)數(shù)

bii

的實部和虛部互為相反數(shù),那么實數(shù)

b

的值為_14.知復(fù)數(shù)b_____.

(為數(shù)單位)是實系數(shù)一元二次方程

的個根,則15.知復(fù)數(shù)滿

(為數(shù)單位),且

2

,則實數(shù)

________.16.復(fù)數(shù)

z

滿足ii

,其中i是數(shù)單位則

z

的虛部_.若有兩個數(shù),它們的和是,為5,則這兩個數(shù)是_______.18.b

,i

是虛數(shù)單位,已知集合

zAA,b的值范圍________1119.?dāng)?shù)

z)ii

為虛數(shù)單位)的共軛復(fù)數(shù)_______.20.知是數(shù)單位則復(fù)數(shù)

z

21

的共軛復(fù)數(shù)_______.三、解題21.虛數(shù)

滿足

2

.()

的值;()

在復(fù)平面上對應(yīng)的點在第一、第三象限的角平分線上,求復(fù)數(shù)

.22.1)復(fù)數(shù)范圍內(nèi)解方程

z

(i

為虛數(shù)單位)()z是虛數(shù),

是實數(shù),且()z的及的部的取值范圍;()設(shè)

,求證:為虛數(shù);()在()條件下求的小值.23.知復(fù)數(shù)

滿足

的虛部為()復(fù)數(shù)z;

121121()復(fù)數(shù)

、

、在平面上對應(yīng)點分別為A

、B、

C

,求OB)的值24.復(fù)數(shù)z=1-ai(aR,復(fù)數(shù)z=3+4i()

2

,求實數(shù)的值;()是純虛數(shù),|z|25.知復(fù)數(shù)

z1

滿足:

z1

.()z;1()復(fù)數(shù)

z

a的.26.知復(fù)數(shù)

z,12

,()時求

z1

的值;()

z1

是純虛數(shù),求a的值;()在平面上對應(yīng)的點在第二象限,求的值范圍.【參考案】***試處理標(biāo),請不要刪一選題1.解析:【詳解】因為

z2

z

,所

z

,

z

(負(fù))因此復(fù)數(shù)的應(yīng)點的軌跡是以點為圓心以3為半徑的圓選A.2.A解析:【分析】首先計算

2

,之后應(yīng)用復(fù)數(shù)的除法運算法則,求得結(jié).【詳解】i

i1ii22

,故選【點睛】該題考查的是有關(guān)復(fù)數(shù)的運算,屬于簡單題.

3.B解析:【分析】利用復(fù)數(shù)的運算法則解得【詳解】

,結(jié)合共軛復(fù)數(shù)的概念即可得結(jié).復(fù)滿足

iz

2i

2i

,復(fù)的共軛復(fù)數(shù)等于,選【點睛】本題考查了復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.4.A解析:【解析】分析:先化“復(fù)數(shù)

z

為純虛數(shù)”,利用充要條件的定義判.詳解:因為復(fù)數(shù)

z

為純虛數(shù),所以

因為x=1是x=1的要條件,所以”是復(fù)

為純虛數(shù)的分必要條件故答案為A.點睛:1)題主要考查純虛數(shù)的概念,考查充要條件的判斷,意在考查學(xué)生對這些知識的掌握水平(2)復(fù)

()

為純虛數(shù)

,

不要把下面的≠0漏掉.5.A解析:【解析】因為復(fù)數(shù)

是純虛數(shù),所以

,則m=0,所以

,則

z

.6.D解析:【分析】利用復(fù)數(shù)的除法運算,化簡

32i2

,利用共軛復(fù)數(shù),虛部,模長的概念,運算求解,

225225進(jìn)行判斷即.【詳解】32i7i25

的共扼復(fù)數(shù)為

47i7,的部為,55z

7,在平面內(nèi)對應(yīng)的點為

,在第一象限.故選:【點睛】本題考查了復(fù)數(shù)的四則運算,共軛復(fù)數(shù),虛部,模長等概念,考查了學(xué)生概念理解,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題7.D解析:【分析】把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡求得可得結(jié)論【詳解】

,利用共軛復(fù)數(shù)的定義

,31

,所以

,故選【點睛】復(fù)數(shù)是高考中的必考知識,主要考查復(fù)數(shù)的概念及復(fù)數(shù)的運算.要注意對實部、虛部的理解,掌握純虛數(shù)、共軛復(fù)數(shù)這些重要概念,復(fù)數(shù)的運算主要考查除法運算,通過分母實數(shù)化轉(zhuǎn)化為復(fù)數(shù)的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失.8.D解析:【解析】因為z=

i

的部,選9.D解析:【分析】利用復(fù)數(shù)的四則運算,求得

z

3i2

,在根據(jù)復(fù)數(shù)的模,復(fù)數(shù)與共軛復(fù)數(shù)的概念等即可

得到結(jié)論.【詳解】由題意

2i1112

,則z

110())2222

的共軛復(fù)數(shù)為

zi

,復(fù)數(shù)的部與虛部之和為2,z在平面內(nèi)對應(yīng)點位于第一象限,故選D【點睛】復(fù)數(shù)代數(shù)形式的加減乘除運算的法則是進(jìn)行復(fù)數(shù)運算的理論依加運算類似于多項式的合并同類項乘法則類似于多項式乘法法則,除法運算則先將除式寫成分式的形,再分母實數(shù)化,其次要熟悉復(fù)數(shù)相關(guān)基本概念,如復(fù)數(shù)

(a,)

的實部為a、虛部為

、模為

2、應(yīng)點為

(a)

、共軛為

bi

.10.解析:【解析】因為

z

i5

,復(fù)數(shù)

z

對應(yīng)的點的坐標(biāo)為

5

,故復(fù)數(shù)

z

對應(yīng)的點位于第三象,故選11.解析:【分析】利用兩個復(fù)數(shù)代數(shù)形式的除法運算性質(zhì),把復(fù)數(shù)化為最簡形式,得到其實部和虛部的值,進(jìn)而求得結(jié).【詳解】1)2i1(1)2

,所以

a

,所以

ab

,故選:【點睛】思路點睛:該題考查的是有關(guān)復(fù)數(shù)的問題,解題思路如下:()用復(fù)數(shù)法運算法則先化簡復(fù)數(shù)

;()定出復(fù)的實部和虛部各是多事;()而求得ab的.

12.解析:【分析】根據(jù)條件可得

zi

,即復(fù)數(shù)

z

0

對應(yīng)的點在以

為圓心2為徑的圓內(nèi)部.表復(fù)數(shù)對的點到0【詳解】

的距離,由圓的性質(zhì)可得答案因為

i

的復(fù)數(shù)

對應(yīng)的點的軌跡是橢圓,所以

i由復(fù)數(shù)的幾何意義可知

i

表示復(fù)數(shù)

z

0

對應(yīng)的點到

的距離小于2.即復(fù)數(shù)

z

0

對應(yīng)的點在以

為圓心2為半徑的圓內(nèi).表復(fù)數(shù)對的點到0AC12

的距離如,設(shè)

C

1,0則

ACAC,即00故選:【點睛】本題考查橢圓的定義的應(yīng)用,考查復(fù)數(shù)的幾何意義的應(yīng)用和利用圓的性質(zhì)求范圍,屬于中檔題.二、填題13.【分析】先化簡再解方程即得解【詳解】由題得因為復(fù)數(shù)的實部和虛部互為相反數(shù)所以故答案為:【點睛】本題主要考查復(fù)數(shù)的除法運算考查復(fù)數(shù)實部虛部的概念意在考查學(xué)生對這些知識的理解掌握水平解析【分析】

先化簡

2bib)ib,解方程+1i555

即得解【詳解】由題得

2bi(2)(1i)b(4)i1i(1i)(1i)5

,

因為復(fù)數(shù)

bii

的實部和虛部互為相反數(shù),所以

b

.故答案為:

【點睛】本題主要考查復(fù)數(shù)的除法運算,考查復(fù)數(shù)實部虛部的概念,意在考查學(xué)生對這些知識的理解掌握水平14.【分析】的共軛復(fù)數(shù)是實系數(shù)一元二次方程的一個根利用一元二次方程的根與系數(shù)的關(guān)系求【詳解】解:為是實系數(shù)一元二次方程的一個根所以是實系數(shù)一元二次方程的一個根所以因此故答案為:【點睛】本題考查了一解析:【分析】

的共軛復(fù)數(shù)

是實系數(shù)一元二次方程x

2

bx0一個根,利用一元二次方程的根與系數(shù)的關(guān)系求【詳解】

、.解因

是實系數(shù)一元二次方程x

2

bx的個根,所以是實系數(shù)一元二次方x的個根,所以

)(2)],c))

,因此

b

.故答案為:【點睛】本題考查了一元二次方程的根與系數(shù)的關(guān)系,屬于基礎(chǔ).15.【分析】先化簡再利用建立方程最后解得實數(shù)的值【詳解】解:∴∵∴解得:故答案為:0【點睛】本題考查復(fù)數(shù)的運算復(fù)數(shù)的幾何意義求參數(shù)是基礎(chǔ)題解析:【分析】先化簡

z

4i

,再利用

22

建立方程

2,22后解得實數(shù)的.【詳解】解:

,z

ai(4)ia4i1(1)

22

2

,

解得:

,故答案為:【點睛】本題考查復(fù)數(shù)的運算,復(fù)數(shù)的幾何意義求參數(shù),是基礎(chǔ).16.-分析】利用復(fù)數(shù)的運算法則求出根據(jù)虛部的概念即可得出【詳解】∴的虛部為故答案為【點睛】本題考查了復(fù)數(shù)的運算法則復(fù)數(shù)的分類考查了推理能力與計算能力屬于基礎(chǔ)題解析:1【分析】利用復(fù)數(shù)的運算法則求出z,據(jù)虛部的概念即可得出.【詳解】

1ii

2

,

的虛部為

,故答案為【點睛】本題考查了復(fù)數(shù)的運算法則、復(fù)數(shù)的分類,考查了推理能力與計算能力,屬于基礎(chǔ)題.17.【分析】設(shè)利用列方程組解方程組求得題目所求兩個數(shù)【詳解】設(shè)依題意有即所以將代入得;將代入解得;將代入得結(jié)合解得或所以對應(yīng)的數(shù)為故答案為:【點睛】本小題主要考查復(fù)數(shù)運算屬于中檔題解析【分析】設(shè)

di,dzz212

列方程組,解方程組求得題目所求兩個數(shù)【詳解】設(shè)

di,d

,依題意有

z4,z122

,即,以adibdbc

.將b入

,得;將a代入

a,得;a代,bd

,結(jié)合解或故答案為:2【點睛】

.所對應(yīng)的數(shù)為2、.

本小題主要考查復(fù)數(shù)運算,屬于中檔.18.【解析】【分析】根據(jù)復(fù)數(shù)的代數(shù)表示法及其幾何意義可知集合A表示的點的軌跡是以(01)為圓心半徑2的圓及內(nèi)部;集合B表示圓的圓心移動到了(11+b);兩圓面有交點即可求解b的取值范圍【詳解】由題意集解析【解析】【分析】根據(jù)復(fù)數(shù)的代數(shù)表示法及其幾何意義可知集合A表的點的軌跡是以,)圓心,半徑為的及內(nèi)部;集合表示圓的圓心移動到了,)兩圓面交點即可求解b的取值范圍.【詳解】由題意,集合A表的點的軌跡是以01)圓心,半徑為2的及內(nèi)部;集合表示點的軌跡為以,1+b)圓心,半徑為2的圓及內(nèi)部≠,說明,兩圓面有交點;

12

2

.可得:15b,故答案:15b,【點睛】本題考查復(fù)數(shù)幾何意義,圓與圓的位置關(guān)系,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,明確A集的意義是關(guān)鍵,是中檔題19.【分析】根據(jù)復(fù)數(shù)的乘法運算可z寫出其共軛復(fù)數(shù)即可【詳解】因為所以故填【點睛】本題主要考查了復(fù)數(shù)的運算共軛復(fù)數(shù)屬于中檔題解析【分析】根據(jù)復(fù)數(shù)的乘法運算可求z,寫出其共軛復(fù)數(shù)即可.【詳解】因為

,所以z

,故填

【點睛】本題主要考查了復(fù)數(shù)的運算,共軛復(fù)數(shù),屬于中檔.20.【解析】分析:利用復(fù)數(shù)代數(shù)形式的乘除運算法則化簡求出復(fù)數(shù)z進(jìn)而求得其共軛復(fù)數(shù)從而求得結(jié)果詳解:因為所以故答案是點睛:該題考查的是有關(guān)復(fù)數(shù)的除法運算以及共軛復(fù)數(shù)的概念與求解問題在解題的過程中需要對復(fù)數(shù)

22y22y解析:i【解析】分析:利用復(fù)數(shù)代數(shù)形式的乘除運算法則化簡,求出復(fù)數(shù)z,進(jìn)而求得其共軛復(fù)數(shù),從而求得結(jié)果詳解:因為

2(2)i13i1(1)(1)222

,所以

z

3i2

,故答案是i.點睛:該題考查的是有關(guān)復(fù)數(shù)的除法運算以及共軛復(fù)數(shù)的概念與求解問題,在解題的過程中,需要對復(fù)數(shù)的除法運算法則靈活掌握,以及共軛復(fù)數(shù)滿足的條件是實部相等,虛部互為相反數(shù)三、解題21.1)

;()

10310i或i.2【分析】()

zyix、,i

為虛數(shù)單位),根據(jù)條件

2

得出x、

所滿足的關(guān)系式,從而可得出的值;()復(fù)數(shù)

表示為一般形式,然后由題意得出實部與虛部相等,并結(jié)合x2

,求出、的,即可得出復(fù)數(shù)

.【詳解】()

xyi(x、

y

,i

為虛數(shù)單位),則

z

,由

zz

2

2

,化簡得

x2225

,因此,

x2

;()

,由于復(fù)數(shù)

在復(fù)平面上對應(yīng)的點在第一、第三象限的角平分線上,則xyx

,所以

yx2225

,解得或33

.

z,1,2222222z,1,2222222因此,z

i或i22【點睛】本題考查復(fù)數(shù)模的計算,同時也考查了復(fù)數(shù)的幾何意義,解題時要結(jié)合已知條件將復(fù)數(shù)表示為一般形式,考查運算求解能力,屬于中等.22.1)z

131i;(2)(i);22

()明見解析;()1【分析】()用待定數(shù)法,結(jié)合復(fù)數(shù)相等構(gòu)造方程組來進(jìn)行求解;2)i)采待定系數(shù)法,根據(jù)實數(shù)的定義構(gòu)造方程即可解得和,用的范圍求得的圍;()利用復(fù)數(shù)的運算進(jìn)行整理,根據(jù)純虛數(shù)的定義證得結(jié)論;iii)將t2,利用基本不等式求得最小值t【詳解】

整理為()

z

i設(shè)

zyiR

,則

x

2

y

2

y22

1x2,解得:y2

3zi())z

且b

bi

bbia

為實數(shù)

b

2

2

,整理可得:2

a,1()

1bi1bi

12由():a

,

i12是純虛數(shù)

0

,2,2()

b

a

1

121令a

,則

t

,a

2tttt

1ttt2t

(當(dāng)且僅當(dāng)

t取等號)

即的小值為:【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,利用待定系數(shù)法結(jié)合復(fù)數(shù)相等的條件進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.運算量較大,綜合性較強(qiáng).23.1)z【分析】

或()()出zbi

,根題意可得2ab

,求即可;()()作分類討論根據(jù)題意計算即可【詳解】()bi

,由可z

a

,

2

,

的虛部為22則或ab

故或()()可知z2i,即B為

,OB當(dāng)

時即為

OA

,此時

2

,即

OC

(1+3當(dāng)即A為

,OA

,此時

2

,即

OB

(OB綜上(OA)【點睛】

1121231211212312本題考查復(fù)數(shù)的運算考復(fù)平面考數(shù)量考查分類討論的思想考查運算能力

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論