高中數(shù)學蘇教版2第二章推理與證明_第1頁
高中數(shù)學蘇教版2第二章推理與證明_第2頁
高中數(shù)學蘇教版2第二章推理與證明_第3頁
高中數(shù)學蘇教版2第二章推理與證明_第4頁
高中數(shù)學蘇教版2第二章推理與證明_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學業(yè)分層測評(十一)(建議用時:45分鐘)學業(yè)達標]一、填空題1.觀察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,則a10+b10=________.【解析】從給出的式子特點觀察可推知等式右端的值,從第三項開始,后一個式子的右端值等于它前面兩個式子右端值的和,照此規(guī)律,則a10+b10=123.【答案】1232.經(jīng)計算發(fā)現(xiàn)下列不等式:eq\r(2)+eq\r(18)<2eq\r(10),eq\r+eq\r<2eq\r(10),eq\r(3+\r(2))+eq\r(17-\r(2))<2eq\r(10),…根據(jù)以上不等式的規(guī)律,試寫出一個對正實數(shù)a,b都成立的條件不等式:________.【解析】∵eq\f(2+18,2)=10,eq\f+,2)=10,eq\f(3+\r(2)+17-\r(2),2)=10,∴不難得出,若a+b=20,eq\r(a)+eq\r(b)<2eq\r(10).【答案】若a+b=20,則eq\r(a)+eq\r(b)<2eq\r(10)3.觀察下列等式:12=112-22=-312-22+32=612-22+32-42=-10…,照此規(guī)律,第n個等式可為________.【解析】12=1,12-22=-(1+2),12-22+32=1+2+3,12-22+32-42=-(1+2+3+4),…,12-22+32-42+…+(-1)n+1n2=(-1)n+1(1+2+…+n)=(-1)n+1eq\f(nn+1,2).【答案】12-22+32-42+…+(-1)n+1n2=(-1)n+1eq\f(nn+1,2)4.觀察下列各式:72=49,73=343,74=2041,…,則72013的末兩位數(shù)字為________.【導(dǎo)學號:01580032】【解析】因為71=7,72=49,73=343,74=2401,75=16807,76=117649,…,所以這些數(shù)的末兩位數(shù)字呈周期性出現(xiàn),且周期T=4.又2013=4×503+1,所以72013的末兩位數(shù)字與71的末兩位數(shù)字相同,為07.【答案】075.設(shè)函數(shù)f(x)=eq\f(x,x+2)(x>0),觀察:f1(x)=f(x)=eq\f(x,x+2),f2(x)=f((f1(x))=eq\f(x,3x+4),f3(x)=f((f2(x))=eq\f(x,7x+8),f4(x)=f((f3(x))=eq\f(x,15x+16),…根據(jù)以上事實,由歸納推理可得:當n∈N*且n≥2時,fn(x)=f(fn-1(x))=________.【解析】函數(shù)結(jié)果的分母中x項系數(shù)所組成的數(shù)列為1,3,7,15,…,可推知該數(shù)列的通項公式為an=2n-1.分母中常數(shù)項依次為2,4,8,16,…,其通項為2n.又函數(shù)中,分子都是x.∴當n≥2時,fn(x)=f(fn-1(x))=eq\f(x,2n-1x+2n).【答案】eq\f(x,2n-1x+2n)6.(2023·青島高二檢測)容易計算2×5=10,22×55=1210,222×555=123210,2222×5555=12343210.根據(jù)此規(guī)律猜想22…2eq\o(2,\s\do4(9位))×55…5eq\o(5,\s\do4(9位))所得結(jié)果由左向右的第八位至第十位的三個數(shù)字依次為________.【解析】由已知可歸納出22…2eq\o(2,\s\do4(9位))×55…5eq\o(5,\s\do4(9位))=123456789876543210,所得結(jié)果由左向右的第八位至第十位的三個數(shù)字依次為898.【答案】8987.(2023·東北三校高二聯(lián)考)某種平面分形圖如圖2-1-5所示,一級分形圖是由一點出發(fā)的三條線段,長度均為1,兩兩夾角為120°;二級分形圖是在一級分形圖的每條線段的末端出發(fā)再生成兩條長度為原來的eq\f(1,3)的線段,且這兩條線段與原線段兩兩夾角為120°,…,依此規(guī)律得到n級分形圖.圖2-1-5則n級分形圖中共有________條線段.【解析】分形圖的每條線段的末端出發(fā)再生成兩條線段,由題圖知,一級分形圖中有3=3×2-3條線段,二級分形圖中有9=3×22-3條線段,三級分形圖中有21=3×23-3條線段,按此規(guī)律得n級分形圖中的線段條數(shù)an=3·2n-3(n∈N*).【答案】3·2n-3(n∈N*)8.把正整數(shù)按一定的規(guī)則排成了如圖2-1-6所示的三角形數(shù)表,設(shè)aij(i,j∈N*)是位于這個三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)第j行.如a42=8,若aij=2009.則i和j的和為________.124357681012911131517141618202224…【解析】由三角形數(shù)表可以看出其奇數(shù)行為奇數(shù)列,偶數(shù)行為偶數(shù)列,2009=2×1005-1,所以2009為第1005個奇數(shù),又前31個奇數(shù)行內(nèi)數(shù)的個數(shù)的和為961,前32個奇數(shù)行內(nèi)數(shù)的個數(shù)的和為1024,故2009在第32個奇數(shù)行內(nèi),所以i=63,因為第63行的第一個數(shù)為2×962-1=1923,2009=1923+2(m-1),所以m=44,即j=44,所以i+j=107.【答案】107二、解答題9.已知數(shù)列{an}的前n項和為Sn,a1=1且Sn-1+eq\f(1,Sn)+2=0(n≥2),計算S1,S2,S3,S4,并猜想Sn的表達式.【解】當n=1時,S1=a1=1;當n=2時,eq\f(1,S2)=-2-S1=-3,∴S2=-eq\f(1,3);當n=3時,eq\f(1,S3)=-2-S2=-eq\f(5,3),∴S3=-eq\f(3,5);當n=4時,eq\f(1,S4)=-2-S3=-eq\f(7,5),∴S4=-eq\f(5,7).猜想:Sn=-eq\f(2n-3,2n-1)(n∈N*)10.傳說古希臘畢達哥拉斯學派的數(shù)學家經(jīng)常在沙灘上畫點或用小石子表示數(shù).他們研究過如圖2-1-6所示的三角形數(shù):圖2-1-6將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列{bn},可以推測:(1)b2014是數(shù)列{an}的第幾項?(2)用k表示b2k-1.【解】(1)an=1+2+…+n=eq\f(nn+1,2),b1=eq\f(4×5,2)=a4,b2=eq\f(5×6,2)=a5,b3=eq\f(9×2×5,2)=a9,b4=eq\f(2×5×11,2)=a10,b5=eq\f(14×3×5,2)=a14,b6=eq\f(3×5×16,2)=a15,…b2014=eq\f(\b\lc\(\rc\)(\a\vs4\al\co1(\f(2014,2)×5))\b\lc\(\rc\)(\a\vs4\al\co1(\f(2014,2)×5+1)),2)=a5035.即b2014是數(shù)列{an}的第5035項.(2)由(1)知b2k-1=eq\f(\b\lc\(\rc\)(\a\vs4\al\co1(\f(2k-1+1,2)×5-1))\b\lc\(\rc\)(\a\vs4\al\co1(\f(2k-1+1,2)×5)),2)=eq\f(5k5k-1,2).能力提升]1.已知f(x)=eq\f(x,1+x),x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N*,則f2014(x)的表達式為________.【解析】由f1(x)=eq\f(x,1+x)?f2(x)=feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x,1+x)))=eq\f(\f(x,1+x),1+\f(x,1+x))=eq\f(x,1+2x);又可得f3(x)=f(f2(x))=eq\f(\f(x,1+2x),1+\f(x,1+2x))=eq\f(x,1+3x),故可猜想f2014(x)=eq\f(x,1+2014x).【答案】eq\f(x,1+2014x)2.觀察下列等式:eq\f(3,1×2)×eq\f(1,2)=1-eq\f(1,22),eq\f(3,1×2)×eq\f(1,2)+eq\f(4,2×3)×eq\f(1,22)=1-eq\f(1,3×22),eq\f(3,1×2)×eq\f(1,2)+eq\f(4,2×3)×eq\f(1,22)+eq\f(5,3×4)×eq\f(1,23)=1-eq\f(1,4×23),…,由以上等式推測到一個一般的結(jié)論:對于n∈N*,eq\f(3,1×2)×eq\f(1,2)+eq\f(4,2×3)×eq\f(1,22)+…+eq\f(n+2,nn+1)×eq\f(1,2n)=________.【解析】觀察所給等式知,第n個等式的右邊為1-eq\f(1,n+1×2n).【答案】1-eq\f(1,n+1×2n)3.已知sin230°+sin290°+sin2150°=eq\f(3,2),sin25°+sin265°+sin2125°=eq\f(3,2).通過觀察上述兩等式的規(guī)律,請寫出一個一般性的命題:___________________.【答案】sin2(α-60°)+sin2α+sin2(α+60°)=eq\f(3,2)4.某少數(shù)民族的刺繡有著悠久的歷史,圖2-1-6①②③④所示為她們刺繡的最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成的,小正方形數(shù)越多,刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.圖2-1-6(1)求f(5)的值;(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達式;(3)求eq\f(1,f1)+eq\f(1,f2-1)+eq\f(1,f3-1)+…+eq\f(1,fn-1)的值.【解】(1)f(5)=41.(2)f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,……由上式規(guī)律,得f(n+1)-f(n)=4n.∴f(n+1)=f(n)+4n,f(n)=f(n-1)+4(n-1)=f(n-2)+4(n-1)+4(n-2)=f(1)+4(n-1)+4(n-2)+4(n-3)+…+4=2n2-2n+1.(3)當n≥2時,eq\f(1,fn-1)=eq\f(1,2nn-1)=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,n-1)-\f(1,n))),∴eq\f(1,f1)+eq\f(1,f2-1)+eq\f(1,f3-1)+…+eq\f(1,fn-1)=1+eq\f(1,2)e

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論