版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年山西藝術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知a,b
,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據(jù)題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.2.某校選修乒乓球課程的學(xué)生中,高一年級有40名,高二年級有50名,現(xiàn)用分層抽樣的方法在這90名學(xué)生中抽取一個樣本,已知在高一年級的學(xué)生中抽取了8名,則在高二年級的學(xué)生中應(yīng)抽取的人數(shù)為______.答案:∵高一年級有40名學(xué)生,在高一年級的學(xué)生中抽取了8名,∴每個個體被抽到的概率是
840=15∵高二年級有50名學(xué)生,∴要抽取50×15=10名學(xué)生,故為:10.3.下列四個命題中,正確的有
個
①;
②;
③,使;
④,使為29的約數(shù).答案:兩解析::①∵(-3)2-4×2×40,∴①正確;②∵2×(-1)+1=-1x,∴③不正確;④x=1是29的約數(shù),∴④正確;∴正確的有兩個點評:本題考查全稱命題、特稱命題,容易題4.過拋物線y2=4x的焦點作直線l交拋物線于A、B兩點,若線段AB中點的橫坐標(biāo)為3,則|AB|等于()A.2B.4C.6D.8答案:由題設(shè)知知線段AB的中點到準(zhǔn)線的距離為4,設(shè)A,B兩點到準(zhǔn)線的距離分別為d1,d2,由拋物線的定義知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故選D.5.已知D是△ABC所在平面內(nèi)一點,,則()
A.
B.
C.=
D.答案:A6.函數(shù)y=ax+b與y=logbx且a>0,在同一坐標(biāo)系內(nèi)的圖象是()A.
B.
C.
D.
答案:∵a>0,則函數(shù)y=ax+b為增函數(shù),與y軸的交點為(0,b)當(dāng)0<b<1時,函數(shù)y=ax+b與y軸的交點在原點和(0,1)點之間,y=logbx為減函數(shù),D圖滿足要求;當(dāng)b>1時,函數(shù)y=ax+b與y軸的交點在(0,1)點上方,y=logbx為增函數(shù),不存在滿足條件的圖象;故選D7.已知向量a與b的夾角為π3,|a|=2,則a在b方向上的投影為______.答案:由投影的定義可得:a在b方向上的投影為:|a|cos<a,b>,而|a|cos<a,b>=2cosπ3=22故為:228.已知m2+n2=1,a2+b2=2,則am+bn的最大值是()
A.1
B.
C.
D.以上都不對答案:C9.已知曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)上一點P,原點為0,直線P0的傾斜角為π4,則P點的坐標(biāo)是______.答案:根據(jù)題意,曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)消去參數(shù)化成普通方程,得x29+y216=1(y≥0)∵直線P0的傾斜角為π4,∴P點在直線y=x上,將其代入橢圓方程得x29+x216=1,解之得x=y=125(舍負(fù)),因此點P的坐標(biāo)為(125,125)故為:(125,125)10.在四邊形ABCD中有AC=AB+AD,則它的形狀一定是______.答案:由向量加法的平行四邊形法則及AC=AB+AD,知四邊形ABCD為平行四邊形,故為:平行四邊形.11.已知f(x)=3mx2-2(m+n)x+n(m≠0)滿足f(0)?f(1)>0,設(shè)x1,x2是方程f(x)=0的兩根,則|x1-x2|的取值范圍為()
A.[,)
B.[,)
C.[,)
D.[,)答案:A12.在極坐標(biāo)系中,直線l經(jīng)過圓ρ=2cosθ的圓心且與直線ρcosθ=3平行,則直線l與極軸的交點的極坐標(biāo)為______.答案:由ρ=2cosθ可知此圓的圓心為(1,0),直線ρcosθ=3是與極軸垂直的直線,所以所求直線的極坐標(biāo)方程為ρcosθ=1,所以直線l與極軸的交點的極坐標(biāo)為(1,0).故為:(1,0).13.已知動點P(x,y)滿足(x+2)2+y2-(x-2)2+y2=2,則動點P的軌跡是______.答案:∵(x+2)2+y2-(x-2)2+y2=2,即動點P(x,y)到兩定點(-2,0),(2,0)的距離之差等于2,由雙曲線定義知動點P的軌跡是雙曲線的一支(右支).:雙曲線的一支(右支).14.已知兩個函數(shù)f(x)和g(x)的定義域和值域都是集合1,2,3,其定義如下表:
表1:
x123f(x)231表2:
x123g(x)321則方程g[f(x)]=x的解集為______.答案:由題意得,當(dāng)x=1時,g[f(1)]=g[2]=2不滿足方程;當(dāng)x=2時,g[f(2)]=g[3]=1不滿足方程;x=3,g[f(3)]=g[1]=3滿足方程,是方程的解.故為:{3}15.一個長方體的長、寬、高之比為2:1:3,全面積為88cm2,則它的體積為
______cm3.答案:由長方體的長、寬、高之比為2:1:3,不妨設(shè)長、寬、高分別為2x,x,3x;則長方體的全面積為:2(2x?x+2x?3x+x?3x)=2×11x2=88,∴x=±2,這里取x=2;所以,長方體的體積為:V=2x?x?3x=4×2×6=48.故為:4816.若A∩B=A∪B,則A______B.答案:設(shè)有集合W=A∪B=B∩C,根據(jù)并集的性質(zhì),W=A∪B?A?W,B?W,根據(jù)交集的性質(zhì),W=A∩B?W?A,W?B由集合子集的性質(zhì),A=B=W,故為:=.17.已知橢圓的短軸長等于2,長軸端點與短軸端點間的距離等于5,則此橢圓的標(biāo)準(zhǔn)方程是______.答案:由題意可得2b=2a2+b2=(5)2,解得b=1a=2.故橢圓的標(biāo)準(zhǔn)方程是x24+y2=1或y24+x2=1.故為x24+y2=1或y24+x2=1.18.給出一個程序框圖,輸出的結(jié)果為s=132,則判斷框中應(yīng)填()
A.i≥11
B.i≥10
C.i≤11
D.i≤12
答案:A19.如圖,有兩條相交成π3角的直線EF,MN,交點是O.一開始,甲在OE上距O點2km的A處;乙在OM距O點1km的B處.現(xiàn)在他們同時以2km/h的速度行走.甲沿EF的方向,乙沿NM的方向.設(shè)與OE同向的單位向量為e1,與OM同向的單位向量為e2.
(1)求e1,e2;
(2)若過2小時后,甲到達(dá)C點,乙到達(dá)D點,請用e1,e2表示CD;
(3)若過t小時后,甲到達(dá)G點,乙到達(dá)H點,請用e1,e2表示GH;
(4)什么時間兩人間距最短?答案:(1)由題意可得e1=12OA,e2=OB,(2)若過2小時后,甲到達(dá)C點,乙到達(dá)D點,則OC=-2e1,OD=5e2,故CD=OD-OC=2e1+5e2,(3)同(2)可得:經(jīng)過t小時后,甲到達(dá)G點,乙到達(dá)H點,則OG=(-2t+2)e1,OH=(2t+1)e2,故GH=OH-OG=(2t-2)e1+(2t+1)e2,(4)由(3)可得GH=(2t-2)e1+(2t+1)e2,故兩人間距離y=|GH|=[(2t-2)e1+(2t+1)e2]2=(2t-2)2+(2t+1)2+2(2t-2)(2t+1)×12=12t2-6t+3,由二次函數(shù)的知識可知,當(dāng)t=--62×12=14時,上式取到最小值32,故14時兩人間距離最短.20.對于函數(shù)f(x),在使f(x)≤M成立的所有常數(shù)M中,我們把M的最小值稱為函數(shù)f(x)的“上確界”則函數(shù)f(x)=(x+1)2x2+1的上確界為()A.14B.12C.2D.4答案:因為f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因為x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常數(shù)M中,M的最小值為2.故選C.21.已知直線方程l1:2x-4y+7=0,l2:x-2y+5=0,則l1與l2的關(guān)系()
A.平行
B.重合
C.相交
D.以上答案都不對答案:A22.對任意實數(shù)x,y,定義運算x*y為:x*y=ax+by+cxy,其中a,b,c為常數(shù),等式右端運算為通常的實數(shù)加法和乘法,現(xiàn)已知1*2=3,2*3=4,并且有一個非零實數(shù)m,使得對于任意的實數(shù)都有x*m=x,則d的值為(
)
A.4
B.1
C.0
D.不確定答案:A23.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C24.設(shè)函數(shù)f(x)的定義域為D,如果對于任意的x1∈D,存在唯一的x2∈D,使得
f(x1)+f(x2)2=C成立(其中C為常數(shù)),則稱函數(shù)y=f(x)在D上的均值為C,現(xiàn)在給出下列4個函數(shù):①y=x3②y=4sinx③y=lgx④y=2x,則在其定義域上的均值為
2的所有函數(shù)是下面的()A.①②B.③④C.①③④D.①③答案:由題意可得,均值為2,則f(x1)+f(x2)2=2即f(x1)+f(x2)=4①:y=x3在定義域R上單調(diào)遞增,對應(yīng)任意的x1,則存在唯一x2滿足x13+x23=4①正確②:y=4sinx,滿足4sinx1+4sinx2=4,令x1=π2,則根據(jù)三角函數(shù)的周期性可得,滿足sinx2=0的x2無窮多個,②錯誤③y=lgx在(0,+∞)單調(diào)遞增,對應(yīng)任意的x1>0,則滿足lgx1+lgx2=4的x2唯一存在③正確④y=2x滿足2x1+2x2=4,令x1=3時x2不存在④錯誤故選D.25.直線y=33x繞原點逆時針方向旋轉(zhuǎn)30°后,所得直線與圓(x-2)2+y2=3的交點個數(shù)是______.答案:∵直線y=33x的斜率為33,∴此直線的傾斜角為30°,∴此直線繞原點逆時針方向旋轉(zhuǎn)30°后傾斜角為60°,∴此直線旋轉(zhuǎn)后的方程為y=3x,由圓(x-2)2+y2=3,得到圓心坐標(biāo)為(2,0),半徑r=3,∵圓心到直線y=3x的距離d=232=3=r,∴該直線與圓相切,則直線與圓(x-2)2+y2=3的交點個數(shù)是1.故為:126.已知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)過點(3,8),求f(4)=______.答案:設(shè)指數(shù)函數(shù)為y=ax(a>0且a≠1)將(3,8)代入得8=a3解得a=2,所以y=2x,則f(4)=42=16故為16.27.方程x2+y2=1(xy<0)的曲線形狀是()
A.
B.
C.
D.
答案:C28.已知數(shù)列{an}的前n項和Sn=an2+bn=c
(a、b、c∈R),則“c=0”是“{an}是等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分也非必要條件答案:數(shù)列{an}的前n項和Sn=an2+bn+c根據(jù)等差數(shù)列的前n項和的公式,可以看出當(dāng)c=0時,Sn=an2+bn表示等差數(shù)列的前n項和,則數(shù)列是一個等差數(shù)列,當(dāng)數(shù)列是一個等差數(shù)列時,表示前n項和時,c=0,故前者可以推出后者,后者也可以推出前者,∴前者是后者的充要條件,故選C.29.設(shè)a,b,c是三個不共面的向量,現(xiàn)在從①a+b;②a-b;③a+c;④b+c;⑤a+b+c中選出使其與a,b構(gòu)成空間的一個基底,則可以選擇的向量為______.答案:構(gòu)成基底只要三向量不共面即可,這里只要含有向量c即可,故③④⑤都是可以選擇的.故為:③④⑤(不唯一,也可以有其它的選擇)30.如圖,在空間直角坐標(biāo)系中,已知直三棱柱的頂點A在x軸上,AB平行于y軸,側(cè)棱AA1平行于z軸.當(dāng)頂點C在y軸正半軸上運動時,以下關(guān)于此直三棱柱三視圖的表述正確的是()
A.該三棱柱主視圖的投影不發(fā)生變化
B.該三棱柱左視圖的投影不發(fā)生變化
C.該三棱柱俯視圖的投影不發(fā)生變化
D.該三棱柱三個視圖的投影都不發(fā)生變化
答案:B31.圓x2+y2=1在矩陣10012對應(yīng)的變換作用下的結(jié)果為______.答案:設(shè)P(x,y)是圓C:x2+y2=1上的任一點,P1(x′,y′)是P(x,y)在矩陣A=10012對應(yīng)變換作用下新曲線上的對應(yīng)點,則x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,將x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故為:x2+4y2=1.32.復(fù)數(shù)z=(2+i)(1+i)在復(fù)平面上對應(yīng)的點位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:因為z=(2+i)(1+i)=2+3i+i2=1+3i,所以復(fù)數(shù)對應(yīng)點的坐標(biāo)為(1,3),所以位于第一象限.故選A.33.無論m,n取何實數(shù)值,直線(3m-n)x+(m+2n)y-n=0都過定點P,則P點坐標(biāo)為
A.(-1,3)
B.
C.
D.答案:D34.復(fù)數(shù)32i+11-i的虛部是______.答案:復(fù)數(shù)32i+11-i=32i+1+i(1-i)(1+i)=32i+1+i2=12+2i∴復(fù)數(shù)的虛部是2,故為:235.已知二階矩陣A=2ab0屬于特征值-1的一個特征向量為1-3,求矩陣A的逆矩陣.答案:由矩陣A屬于特征值-1的一個特征向量為α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;
…(3分)解得A=2130,…(8分)∴A逆矩陣是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.36.參數(shù)方程(θ為參數(shù))表示的曲線是()
A.直線
B.圓
C.橢圓
D.拋物線答案:C37.設(shè)隨機變量ζ~N(2,p),隨機變量η~N(3,p),若,則P(η≥1)=()
A.
B.
C.
D.答案:D38.已知:正四棱柱ABCD—A1B1C1D1中,底面邊長為2,側(cè)棱長為4,E、F分別為棱AB、BC的中點.
(1)求證:平面B1EF⊥平面BDD1B1;
(2)求點D1到平面B1EF的距離.答案:(1)證明略(2)解析:(1)
建立如圖所示的空間直角坐標(biāo)系,則D(0,0,0),B(2,2,0),E(2,,0),F(xiàn)(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)
由(1)知=(2,2,0),=(-,,0),=(0,-,-4).設(shè)平面B1EF的法向量為n,且n=(x,y,z)則n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,則y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距離d===.39.已知隨機變量X的分布列是:(
)
X
4
a
9
10
P
0.3
0.1
b
0.2
且EX=7.5,則a的值為()
A.5
B.6
C.7
D.8答案:C40.下列三句話按“三段論”模式排列順序正確的是()
①y=sin
x(x∈R
)是三角函數(shù);②三角函數(shù)是周期函數(shù);
③y=sin
x(x∈R
)是周期函數(shù).
A.①②③
B.②①③
C.②③①
D.③②①答案:B41.閱讀下面的程序框圖,則輸出的S=()A.14B.20C.30D.55答案:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循環(huán),故為C.42.某程序框圖如圖所示,若a=3,則該程序運行后,輸出的x值為______.答案:由題意,x的初值為1,每次進(jìn)行循環(huán)體則執(zhí)行乘二加一的運算,執(zhí)行4次后所得的結(jié)果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故為:31.43.函數(shù)f(x)的定義域為R+,若f(x+y)=f(x)+f(y),f(8)=3,則f(2)=()A.54B.34C.12D.14答案:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,則f(8)=2f(4)=3,∴f(4)=32,令x=y=2,f(4)=2f(2)=32,∴f(2)=34.故選B.44.曲線的參數(shù)方程為(t是參數(shù)),則曲線是(
)
A.線段
B.雙曲線的一支
C.圓
D.射線答案:D45.現(xiàn)有一個關(guān)于平面圖形的命題:如圖,同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24.類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為______.答案:∵同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24,類比到空間有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為a38,故為a38.46.在曲線(t為參數(shù))上的點是()
A.(1,-1)
B.(4,21)
C.(7,89)
D.答案:A47.直線y=1與直線y=3x+3的夾角為______答案:l1與l2表示的圖象為(如下圖所示)y=1與x軸平行,y=3x+3與x軸傾斜角為60°,所以y=1與y=3x+3的夾角為60°.故為60°48.設(shè)兩個正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線如圖所示,則有()
A.μ1<μ2,σ1>σ2
B.μ1<μ2,σ1<σ2
C.μ1>μ2,σ1>σ2
D.μ1>μ2,σ1<σ2
答案:A49.下面程序運行后,輸出的值是()
A.42
B.43
C.44
D.45
答案:C50.如圖,AB是半圓O的直徑,C、D是半圓上的兩點,半圓O的切線PC交AB的延長線于點P,∠PCB=25°,則∠ADC為()
A.105°
B.115°
C.120°
D.125°
答案:B第2卷一.綜合題(共50題)1.設(shè)點P(+,1)(t>0),則||(O為坐標(biāo)原點)的最小值是()
A.
B.
C.5
D.3答案:A2.已知正整數(shù)指數(shù)函數(shù)f(x)的圖象經(jīng)過點(3,27),
(1)求函數(shù)f(x)的解析式;
(2)求f(5);
(3)函數(shù)f(x)有最值嗎?若有,試求出;若無,說明原因.答案:(1)設(shè)正整數(shù)指數(shù)函數(shù)為f(x)=ax(a>0,a≠1,x∈N+),因為函數(shù)f(x)的圖象經(jīng)過點(3,27),所以f(3)=27,即a3=27,解得a=3,所以函數(shù)f(x)的解析式為f(x)=3x(x∈N+).(2)由f(x)=3x(x∈N+),可得f(5)=35=243.(3)∵f(x)的定義域為N+,且在定義域上單調(diào)遞增,∴f(x)有最小值,最小值是f(1)=3;f(x)無最大值.解析:已知正整數(shù)指數(shù)函數(shù)f(x)的圖象經(jīng)過點(3,27),(1)求函數(shù)f(x)的解析式;(2)求f(5);(3)函數(shù)f(x)有最值嗎?若有,試求出;若無,說明原因.3.已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點為F,準(zhǔn)線為l,過拋物線上一點M作l的垂線,垂足為E.若|EF|=|MF|,點M的橫坐標(biāo)是3,則p=(
)。答案:24.在同一坐標(biāo)系中,y=ax與y=a+x表示正確的是()A.
B.
C.
D.
答案:由y=x+a得斜率為1排除C,由y=ax與y=x+a中a同號知若y=ax遞增,則y=x+a與y軸的交點在y軸的正半軸上,由此排除B;若y=ax遞減,則y=x+a與y軸的交點在y軸的負(fù)半軸上,由此排除D,知A是正確的;故選A.5.某項選拔共有四輪考核,每輪設(shè)有一個問題,能正確回答問題者進(jìn)入下一輪考核,否則
即被淘汰.已知某選手能正確回答第一、二、三、四輪的問題的概率分別為、、、,且各輪問題能否正確回答互不影響.
(Ⅰ)求該選手進(jìn)入第四輪才被淘汰的概率;
(Ⅱ)求該選手至多進(jìn)入第三輪考核的概率.
(注:本小題結(jié)果可用分?jǐn)?shù)表示)答案:(1)該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.解析:(Ⅰ)記“該選手能正確回答第輪的問題”的事件為,則,,,,該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.6.已知△ABC的頂點坐標(biāo)為A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,則AD的長為______.答案:D在BC上,且S△ABC=3S△ABD,∴D點為BC邊上的三等分點則D點分線段BC所成的比為12則易求出D點坐標(biāo)為:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故為:327.把函數(shù)y=ex的圖像按向量=(2,3)平移,得到y(tǒng)=f(x)的圖像,則f(x)=(
)
A.ex+2+3
B.ex+2-3
C.ex-2+3
D.ex-2-3答案:C8.若e1,e2是兩個不共線的向量,已知AB=2e1+ke2,CB=e1+3e2,CD=2e1-e2,若A,B,D三點共線,則k=______.答案:BD=CD-CB=(2e1-e2)-(e1+3e2)=2e1-4e2因為A,B,D三點共線,所以AB=kBD,已知AB=2e1+ke2,BD=2e1-4e2所以k=-4故為:-49.已知點(3,1)和(-4,6)在直線3x-2y+a=0的兩側(cè),則實數(shù)a的取值范圍是(
)
A.a<-7或a>24
B.a=7或a=24
C.-7<a<24
D.-24<a<7答案:C10.在平行六面體ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,則x+y+z等于______.答案:根據(jù)向量的加法法則可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故為:7611.袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個,現(xiàn)從袋中任意取出3個小球,假設(shè)每個小球被取出的可能性都相等.
(Ⅰ)求取出的3個小球上的數(shù)字分別為1,2,3的概率;
(Ⅱ)求取出的3個小球上的數(shù)字恰有2個相同的概率;
(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,求P(X≥4)的值.答案:(I)記“取出的3個小球上的數(shù)字分別為1,2,3”的事件記為A,則P(A)=C12C12C12C310=8120=115;(Ⅱ)記“取出的3個小球上的數(shù)字恰有2個相同”的事件記為A,則P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,則X≥4包含取出的3個小球上的最大數(shù)字為4或5兩種情況,當(dāng)取出的3個小球上的最大數(shù)字為4時,P(X=4)=C12C26+C22C16C310=36120=310;當(dāng)取出的3個小球上的最大數(shù)字為5時,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.12.定義集合運算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},設(shè)集合A={0,1},B={2,3},則集合A⊙B的所有元素之和為()A.0B.6C.12D.18答案:當(dāng)x=0時,z=0,當(dāng)x=1,y=2時,z=6,當(dāng)x=1,y=3時,z=12,故所有元素之和為18,故選D13.設(shè),是互相垂直的單位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)則實數(shù)m為()
A.-2
B.2
C.-
D.不存在答案:A14.下列圖形中不一定是平面圖形的是()
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B15.若向量a=(4,2,-4),b=(6,-3,2),則(2a-3b)?(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)?(a+2b)=-10×16+13×(-4)=-212故為-21216.已知向量a=(8,x,x).b=(x,1,2),其中x>0.若a∥b,則x的值為()
A.8
B.4
C.2
D.0答案:B17.直線(t為參數(shù))和圓x2+y2=16交于A,B兩點,則AB的中點坐標(biāo)為()
A.(3,-3)
B.(-,3)
C.(,-3)
D.(3,-)答案:D18.類比“等差數(shù)列的定義”給出一個新數(shù)列“等和數(shù)列的定義”是()A.連續(xù)兩項的和相等的數(shù)列叫等和數(shù)列B.從第一項起,以后每一項與前一項的和都相等的數(shù)列叫等和數(shù)列C.從第二項起,以后每一項與前一項的差都不相等的數(shù)列叫等和數(shù)列D.從第二項起,以后每一項與前一項的和都相等的數(shù)列叫等和數(shù)列答案:由等差數(shù)列的定義:從第二項起,以后每一項與前一項的差都相等的數(shù)列叫等差數(shù)列類比可得:從第二項起,以后每一項與前一項的和都相等的數(shù)列叫等和數(shù)列故選D19.如圖程序輸出的結(jié)果是()
A.3,4
B.4,4
C.3,3
D.4,3
答案:B20.隋機變量X~B(6,),則P(X=3)=()
A.
B.
C.
D.答案:C21.|a|=4,a與b的夾角為30°,則a在b方向上的投影為______.答案:a在b方向上的投影為|a|cos30°=4×32=23故為:2322.已知,求證:.答案:證明略解析:因為是輪換對稱不等式,可考慮由局部證整體.,相加整理得.當(dāng)且僅當(dāng)時等號成立.【名師指引】綜合法證明不等式常用兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這一結(jié)論,運用時要結(jié)合題目條件,有時要適當(dāng)變形.23.直線kx-y=k-1與直線ky=x+2k的交點在第二象限內(nèi),則k的取值范圍是
______.答案:聯(lián)立兩直線方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,當(dāng)k+1≠0即k≠-1時,解得x=kk-1,把x=kk-1代入③得到y(tǒng)=2k-1k-1,所以交點坐標(biāo)為(kk-1,2k-1k-1)因為直線kx-y=k-1與直線ky=x+2k的交點在第二象限內(nèi),得kk-1<02k-1k-1>
0解得0<k<1,k>1或k<12,所以不等式組的解集為0<k<12則k的取值范圍是0<k<12故為:0<k<1224.若曲線x24+k+y21-k=1表示雙曲線,則k的取值范圍是
______.答案:要使方程為雙曲線方程需(4+k)(1-k)<0,即(k-1)(k+4)>0,解得k>1或k<-4故為(-∞,-4)∪(1,+∞)25.在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點,E為AD的中點,則OE可表示為(用a,b、c表示).
()A.12a+14b+14cB.12a+13b-12cC.13a+14b+14cD.13a-14b+14c答案:OE=OA+12AD=OA+12×12(AB+AC)=OA+14×(OB-OA+OC-OA)PD.CD+BC.AD+CA.BD=12OA+14OB+14OC=12a+14b+14c.故選A.26.若函數(shù)y=f(x)的定義域是[2,4],則y=f(log12x)的定義域是()A.[12,1]B.[4,16]C.[116,14]D.[2,4]答案:∵y=f(log12x),令log12x=t,∴y=f(log12x)=f(t),∵函數(shù)y=f(x)的定義域是[2,4],∴y=f(t)的定義域也為[2,4],即2≤t≤4,∴有2≤log12x≤4,解得:116≤x≤14,∵函數(shù)的定義域即解析式中自變量的取值范圍,∴y=f(log12x)的定義域為116≤x≤14,即:[116,14].故選C.27.已知平面上直線l的方向向量=(-,),點O(0,0)和A(1,-2)在l上的射影分別是O'和A′,則=λ,其中λ等于()
A.
B.-
C.2
D.-2答案:D28.已知=(-3,2,5),=(1,x,-1),且=2,則x的值為()
A.3
B.4
C.5
D.6答案:C29.已知橢圓(a>b>0)的焦點分別為F1,F(xiàn)2,b=4,離心率e=過F1的直線交橢圓于A,B兩點,則△ABF2的周長為()
A.10
B.12
C.16
D.20答案:D30.若直線過點(1,2),(),則此直線的傾斜角是()
A.60°
B.45°
C.30°
D.90°答案:C31.在班級隨機地抽取8名學(xué)生,得到一組數(shù)學(xué)成績與物理成績的數(shù)據(jù):
數(shù)學(xué)成績6090115809513580145物理成績4060754070856090(1)計算出數(shù)學(xué)成績與物理成績的平均分及方差;
(2)求相關(guān)系數(shù)r的值,并判斷相關(guān)性的強弱;(r≥0.75為強)
(3)求出數(shù)學(xué)成績x與物理成績y的線性回歸直線方程,并預(yù)測數(shù)學(xué)成績?yōu)?10的同學(xué)的物理成績.答案:(1)計算出數(shù)學(xué)成績與物理成績的平均分及方差;.x=100,.y=65,數(shù)學(xué)成績方差為750,物理成績方差為306.25;(4分)(2)求相關(guān)系數(shù)r的值,并判斷相關(guān)性的強弱;r=6675≈0.94>0.75,相關(guān)性較強;(8分)(3)求出數(shù)學(xué)成績x與物理成績y的線性回歸直線方程,并預(yù)測數(shù)學(xué)成績?yōu)?10的同學(xué)的物理成績.y=0.6x+5,預(yù)測數(shù)學(xué)成績?yōu)?10的同學(xué)的物理成績?yōu)?1.(12分)32.直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是______.答案:直線(x+1)a+(y+1)b=0化為ax+by+(a+b)=0,所以圓心點到直線的距離d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是:相交或相切.故為:相交或相切.33.設(shè)隨機變量X服從B(6,),則P(X=3)的值是()
A.
B.
C.
D.答案:B34.若矩陣A=
72
69
67
65
62
59
81
74
68
64
59
52
85
79
76
72
69
64
228
219
211
204
195
183
是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()
A.語文
B.?dāng)?shù)學(xué)
C.外語
D.都一樣答案:B35.已知x、y之間的一組數(shù)據(jù)如下:
x0123y8264則線性回歸方程y=a+bx所表示的直線必經(jīng)過點()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴線性回歸方程y=a+bx所表示的直線必經(jīng)過點(1.5,5)故選C36.將函數(shù)進(jìn)行平移,使得到的圖形與拋物線的兩個交點關(guān)于原點對稱,試求平移后的圖形對應(yīng)的函數(shù)解析式.答案:函數(shù)解析式是解析:將函數(shù)進(jìn)行平移,使得到的圖形與拋物線的兩個交點關(guān)于原點對稱,試求平移后的圖形對應(yīng)的函數(shù)解析式.37.直三棱柱ABC-A1B1C1
中,若CA=a,CB=b,CC1=c,則A1B=______.答案:向量加法的三角形法則,得到A1B=A1C+CB=A1C1+C1C+CB=-CA-CC1+CB=-a-c+b.故為:-a-c+b.38.A、B為球面上相異兩點,則通過A、B兩點可作球的大圓有()A.一個B.無窮多個C.零個D.一個或無窮多個答案:如果A,B兩點為球面上的兩極點(即球直徑的兩端點)則通過A、B兩點可作球的無數(shù)個大圓如果A,B兩點不是球面上的兩極點(即球直徑的兩端點)則通過A、B兩點可作球的一個大圓故選:D39.若lga,lgb是方程2x2-4x+1=0的兩個根,則的值等于
A.2
B.
C.4
D.答案:A40.一段雙行道隧道的橫截面邊界由橢圓的上半部分和矩形的三邊組成,如圖所示.一輛卡車運載一個長方形的集裝箱,此箱平放在車上與車同寬,車與箱的高度共計4.2米,箱寬3米,若要求通過隧道時,車體不得超過中線.試問這輛卡車是否能通過此隧道,請說明理由.答案:建立如圖所示的坐標(biāo)系,則此隧道橫截面的橢圓上半部分方程為:x225+y24=1,y≥0.令x=3,則代入橢圓方程,解得y=1.6,因為1.6+3=4.6>4.2,所以,卡車能夠通過此隧道.41.兩條互相平行的直線分別過點A(6,2)和B(-3,-1),并且各自繞著A,B旋轉(zhuǎn),如果兩條平行直線間的距離為d.
求:
(1)d的變化范圍;
(2)當(dāng)d取最大值時兩條直線的方程.答案:(1)方法一:①當(dāng)兩條直線的斜率不存在時,即兩直線分別為x=6和x=-3,則它們之間的距離為9.…(2分)②當(dāng)兩條直線的斜率存在時,設(shè)這兩條直線方程為l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)綜合①②可知,所求d的變化范圍為(0,310].方法二:如圖所示,顯然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的變化范圍為(0,310].(2)由圖可知,當(dāng)d取最大值時,兩直線垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直線的斜率為-3.故所求的直線方程分別為y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)42.已知集合A={1,2,3},集合B={4,5},映射f:A→B,且滿足1對應(yīng)的元素是4,則這樣的映射有()A.2個B.4個C.8個D.9個答案:∵滿足1對應(yīng)的元素是4,集合A中還有兩個元素2和3,2可以和4對應(yīng),也可以和5對應(yīng),3可以和4對應(yīng),也可以和5對應(yīng),每個元素有兩種不同的對應(yīng),∴共有2×2=4種結(jié)果,故選B.43.如圖,已知OA、OB是⊙O的半徑,且OA⊥OB,P是線段OA上一點,直線BP交⊙O于點Q,過Q作⊙O的切線交直線OA于點E,求證:∠OBP+∠AQE=45°.答案:證明:連接AB,則∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°44.某班有40名學(xué)生,其中有15人是共青團員.現(xiàn)將全班分成4個小組,第一組有學(xué)生10人,共青團員4人,從該班任選一個學(xué)生代表.在選到的學(xué)生代表是共青團員的條件下,他又是第一組學(xué)生的概率為()A.415B.514C.14D.34答案:由于所有的共青團員共有15人,而第一小組有4人是共青團員,故在選到的學(xué)生代表是共青團員的條件下,他又是第一組學(xué)生的概率為415,故選A.45.已知圓C的極坐標(biāo)方程是ρ=2sinθ,那么該圓的直角坐標(biāo)方程為
______,半徑長是
______.答案:把極坐標(biāo)方程是ρ=2sinθ的兩邊同時乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)為圓心,半徑等于1的圓,故為:x2+(y-1)2=1;1.46.已知f(x)在(0,2)上是增函數(shù),f(x+2)是偶函數(shù),那么正確的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根據(jù)函數(shù)的圖象的平移可得把f(x+2)向右平移2個單位可得f(x)的圖象f(x+2)是偶函數(shù),其圖象關(guān)于y軸對稱可知f(x)的圖象關(guān)于x=2對稱∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)單調(diào)遞增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故選:B47.如圖,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F(xiàn)分別為AD,BC上點,且EF=3,EF∥AB,則梯形ABFE與梯形EFCD的面積比為______.答案:∵E,F(xiàn)分別為AD,BC上點,且EF=3,EF∥AB,∴EF是梯形的中位線,設(shè)兩個梯形的高是h,∴梯形ABFE的面積是(4+3)h2=7h2,梯形EFCD的面積(2+3)h2=5h2∴梯形ABFE與梯形EFCD的面積比為7h25h2=75,故為:7:548.平面向量、的夾角為60°,=(2,0),=1,則=(
)
A.
B.
C.3
D.7答案:B49.拋物線y2=4x的焦點坐標(biāo)是()
A.(4,0)
B.(2,0)
C.(1,0)
D.答案:C50.如圖,中心均為原點O的雙曲線與橢圓有公共焦點,M,N是雙曲線的兩頂點.若M,O,N將橢圓長軸四等分,則雙曲線與橢圓的離心率的比值是()A.3B.2C.3D.2答案:∵M(jìn),N是雙曲線的兩頂點,M,O,N將橢圓長軸四等分∴橢圓的長軸長是雙曲線實軸長的2倍∵雙曲線與橢圓有公共焦點,∴雙曲線與橢圓的離心率的比值是2故選B.第3卷一.綜合題(共50題)1.已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點為F,準(zhǔn)線為l,過拋物線上一點M作l的垂線,垂足為E.若|EF|=|MF|,點M的橫坐標(biāo)是3,則p=(
)。答案:22.在吸煙與患肺病這兩個分類變量的計算中,“若x2的觀測值為6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系”這句話的意思是指()
A.在100個吸煙的人中,必有99個人患肺病
B.有1%的可能性認(rèn)為推理出現(xiàn)錯誤
C.若某人吸煙,則他有99%的可能性患有肺病
D.若某人患肺病,則99%是因為吸煙答案:B3.已知兩點分別為A(4,3)和B(7,-1),則這兩點之間的距離為()A.1B.2C.3D.5答案:∵A(4,3)和B(7,-1),∴AB=(4-7)2+(3+1)2=5故選D.4.“a>1”是“1a<1”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由1a<1得:當(dāng)a>0時,有1<a,即a>1;當(dāng)a<0時,不等式恒成立.所以1a<1?a>1或a<0從而a>1是1a<1的充分不必要條件.故應(yīng)選:A5.已知a=(2,-1,1),b=(-1,4,-2),c=(λ,5,1),若向量a,b,c共面,則λ=______.答案:∵a、b、c三向量共面,∴c=xa+yb,x,y∈R,∴(λ,5,1)=(2x,-x,x)+(-y,4y,-2y)=(2x-y,-x+4y,x-2y),∴2x-y=λ,-x+4y=5,x-2y=1,解得x=7,y=3,λ=11;故為;
11.6.(理科)若隨機變量ξ~N(2,22),則D(14ξ)的值為______.答案:解;∵隨機變量ξ服從正態(tài)分布ξ~N(2,22),∴可得隨機變量ξ方差是4,∴D(14ξ)的值為142D(ξ)=142×4=14.故為:14.7.從集合M={1,2,3,…,10}選出5個數(shù)組成的子集,使得這5個數(shù)的任兩個數(shù)之和都不等于11,則這樣的子集有______個.答案:集合{1,2,…,10}中和是11的有:1+10,2+9,3+8,4+7,5+6,選出5個不同的數(shù)組成子集,就是從這5組中分別取一個數(shù),而每組的取法有2種,所以這樣的子集有:2×2×2×2×2=32故這樣的子集有32個故為:328.已知圓柱與圓錐的底面積相等,高也相等,它們的體積分別為V1和V2,則V1:V2=()A.1:3B.1:1C.2:1D.3:1答案:設(shè)圓柱,圓錐的底面積為S,高為h,則由柱體,錐體的體積公式得:V1:V2=(Sh):(13Sh)=3:1故選D.9.平面向量、的夾角為60°,=(2,0),=1,則=(
)
A.
B.
C.3
D.7答案:B10.觀察下列各式:1=0+1,2+3+4=1+8,5+6+7+8+9=8+27,…,猜想第5個等式應(yīng)為______.答案:由題意,(i)等式左邊為一段連續(xù)自然數(shù)之和,且最后一個和數(shù)恰為各等式序號的立方,最前一個和數(shù)恰為等式序號減1平方加1;(ii)等式右邊均為兩數(shù)立方和,且也與等式序號具有明顯的相關(guān)性.故猜想第5個等式應(yīng)為17+18+19+20+21+22+23+24+25=64+125故為:17+18+19+20+21+22+23+24+25=64+12511.設(shè)直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()
A.
B.
C.
D.答案:C12.(幾何證明選講選做題)
如圖,已知PA是圓O的切線,切點為A,直線PO交圓O于B,C兩點,AC=2,∠PAB=120°,則切線PA的長度等于______.答案:∵∠PAB=120°,∴優(yōu)弧ACB=240°,∴劣弧AB=120°,∴∠ACB=60°,又∵OA=OC故∠AOP=60°,OA=AC=2,∠又∵PA是圓O的切線,切點為A,∴∠OAP=90°∴PA=3OA=23故為:2313.若函數(shù)y=f(x)的定義域是[2,4],則y=f(log12x)的定義域是()A.[12,1]B.[4,16]C.[116,14]D.[2,4]答案:∵y=f(log12x),令log12x=t,∴y=f(log12x)=f(t),∵函數(shù)y=f(x)的定義域是[2,4],∴y=f(t)的定義域也為[2,4],即2≤t≤4,∴有2≤log12x≤4,解得:116≤x≤14,∵函數(shù)的定義域即解析式中自變量的取值范圍,∴y=f(log12x)的定義域為116≤x≤14,即:[116,14].故選C.14.如圖是一幾何體的三視圖,正視圖是一等腰直角三角形,且斜邊BD長為2;側(cè)視圖一直角三角形;俯視圖為一直角梯形,且AB=BC=1,則異面直線PB與CD所成角的正切值是()A.1B.2C.12D.12答案:取AD的中點E,連接BE,PE,CE,根據(jù)題意可知BE∥CD,∴∠PBE為異面直線PB與CD所成角根據(jù)條件知,PE=1,BE=2,PE⊥BE∴tan∠PBE=12故選C.15.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共線;④共線向量一定相等;⑤長度相等的向量是相等向量;⑥平行于同一個向量的兩個向量是共線向量,其中正確的命題是______.答案:∵平行向量即為共線向量其定義是方向相同或相反;相等向量的定義是模相等、方向相同;①平行向量不一定相等;故錯;②不相等的向量也可能不平行;故錯;③相等向量一定共線;正確;④共線向量不一定相等;故錯;⑤長度相等的向量方向相反時不是相等向量;故錯;⑥平行于零向量的兩個向量是不一定是共線向量,故錯.其中正確的命題是③.故為:③.16.請輸入一個奇數(shù)n的BASIC語句為______.答案:INPUT表示輸入語句,輸入一個奇數(shù)n的BASIC語句為:INPUT“輸入一個奇數(shù)n”;n.故為:INPUT“輸入一個奇數(shù)n”;n.17.設(shè)集合A={1,2,4},B={2,6},則A∪B等于()A.{2}B.{1,2,4,6}C.{1,2,4}D.{2,6}答案:∵集合A={1,2,4},B={2,6},∴A∪B={1,2,4}∪{2,6}={1,2,4,6},故選B.18.設(shè)兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(4,1),則兩圓心的距離|C1C2|=______.答案:∵兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(4,1),故兩圓圓心在第一象限的角平分線上,設(shè)圓心的坐標(biāo)為(a,a),則有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圓心為(5+22,5+22
)
和(5-22,5-22
),故兩圓心的距離|C1C2|=2[(5+22)-(5-22)]=8,故為:819.已知拋物線x2=4y上的點p到焦點的距離是10,則p點坐標(biāo)是
______.答案:根據(jù)拋物線方程可求得焦點坐標(biāo)為(0,1)根據(jù)拋物線定義可知點p到焦點的距離與到準(zhǔn)線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點坐標(biāo)是(±6,9)故為:(±6,9)20.如圖是將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù)的一個程序框圖,判斷框內(nèi)應(yīng)填入的條件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù),11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框圖對累加變量S和循環(huán)變量i的賦值S=1,i=1,i不滿足判斷框中的條件,執(zhí)行S=1+2×S=1+2×1=3,i=1+1=2,i不滿足條件,執(zhí)行S=1+2×3=7,i=2+1=3,i不滿足條件,執(zhí)行S=1+2×7=15,i=3+1=4,i仍不滿足條件,執(zhí)行S=1+2×15=31,此時31是要輸出的S值,說明i不滿足判斷框中的條件,由此可知,判斷框中的條件應(yīng)為i>4.故選D.21.拋物線x=14ay2的焦點坐標(biāo)為()A.(116a,0)B.(a,0)C.(0,116a)D.(0,a)答案:拋物線x=14ay2可化為:y2=4ax,它的焦點坐標(biāo)是(a,0)故選B.22.設(shè)集合A={1,2},則滿足A∪B={1,2,3}的集合B的個數(shù)是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},則集合B中必含有元素3,即此題可轉(zhuǎn)化為求集合A={1,2}的子集個數(shù)問題,所以滿足題目條件的集合B共有22=4個.故選擇C.23.設(shè)O是正△ABC的中心,則向量AO,BO.CO是()
A.相等向量
B.模相等的向量
C.共線向量
D.共起點的向量答案:B24.設(shè)△ABC是邊長為1的正三角形,則|CA+CB|=______.答案:∵△ABC是邊長為1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+
2×12=3,故為:325.在甲、乙兩個盒子里分別裝有標(biāo)號為1、2、3、4的四個小球,現(xiàn)從甲、乙兩個盒子里各取出1個小球,每個小球被取出的可能性相等.
(1)求取出的兩個小球上標(biāo)號為相鄰整數(shù)的概率;
(2)求取出的兩個小球上標(biāo)號之和能被3整除的概率;
(3)求取出的兩個小球上標(biāo)號之和大于5整除的概率.答案:甲、乙兩個盒子里各取出1個小球計為(X,Y)則基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)總數(shù)為16種.(1)其中取出的兩個小球上標(biāo)號為相鄰整數(shù)的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種故取出的兩個小球上標(biāo)號為相鄰整數(shù)的概率P=38;(2)其中取出的兩個小球上標(biāo)號之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5種故取出的兩個小球上標(biāo)號之和能被3整除的概率為516;(3)其中取出的兩個小球上標(biāo)號之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6種故取出的兩個小球上標(biāo)號之和大于5的概率P=3826.已知直線l1,l2的夾角平分線所在直線方程為y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是()
A.bx+ay+c=0
B.a(chǎn)x-by+c=0
C.bx+ay-c=0
D.bx-ay+c=0答案:A27.已知:在△ABC中,AD為∠BAC的平分線,AD的垂直平分線EF與AD交于點E,與BC的延長線交于點F,若CF=4,BC=5,則DF=______.答案:連接FA,如下圖所示:∵EF垂直平分AD,∴FA=FD,∠FAD=∠FDA.即∠FAC+∠CAD=∠B+∠BAD.又∠CAD=∠BAD.故∠FAC=∠B;又∠AFC=∠BFA.∴△ABF∽△CAF.∴AF2=CF?BF=4?(4+5)=36∴DF=AF=6故為:628.命題“若b≠3,則b2≠9”的逆命題是______.答案:根據(jù)“若p則q”的逆命題是“若q則p”,可得命題“若b≠3,則b2≠9”的逆命題是若b2≠9,則b≠3.故為:若b2≠9,則b≠3.29.(不等式選講選做題)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314時取等號.即x2+y2+z2的最小值為114.解法二:設(shè)向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|
|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,當(dāng)且僅當(dāng)a與b共線時取等號,即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314時取等號.故為114.30.函數(shù)f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函數(shù)f(x)=11+x2(x∈R),∴1+x2≥1,所以原函數(shù)的值域是(0,1],故選B.31.某化肥廠甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30min抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:
甲:86、72、92、78、77;
乙:82、91、78、95、88
(1)這種抽樣方法是哪一種?
(2)將這兩組數(shù)據(jù)用莖葉圖表示;
(3)將兩組數(shù)據(jù)比較,說明哪個車間產(chǎn)品較穩(wěn)定.答案:(1)因為間隔時間相同,故是系統(tǒng)抽樣.(2)莖葉圖如下:.(3)因為.x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙車間產(chǎn)品較穩(wěn)定.32.設(shè)a=log32,b=log23,c=,則()
A.c<b<a
B.a(chǎn)<c<b
C.c<a<b
D.b<c<a答案:C33.如圖是《集合》一章的知識結(jié)構(gòu)圖,如果要加入“交集”,則應(yīng)該放在()
A.“集合”的下位
B.“概念”的下位
C.“表示”的下位
D.“基本運算”的下位
答案:D34.等于()
A.a(chǎn)
B.a(chǎn)2
C.a(chǎn)3
D.a(chǎn)4答案:B35.若正四面體ABCD的棱長為1,M是AB的中點,則MC
?MD
=______.答案:在正四面體中,因為M是AB的中點,所以CM=12(CA+CB),DM=12(DA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 期貨交易擔(dān)保合同
- 股票配資投資者信息披露合同
- 綜合風(fēng)險管理合同
- 混凝土外觀質(zhì)量保證措施方案
- 現(xiàn)代化寫字樓租賃合同模板
- 項目認(rèn)證服務(wù)合作合同
- 高精度設(shè)備租賃合同
- 股票配資綜合服務(wù)合同
- 危險貨物道路運輸四個標(biāo)準(zhǔn)之運輸事故應(yīng)急預(yù)案
- 跨國養(yǎng)殖產(chǎn)品貿(mào)易合作計劃協(xié)議
- 生物的多樣性及其保護 單元作業(yè)設(shè)計
- 村級財務(wù)培訓(xùn)課件
- 二級安全教育考試卷及答案
- 綠色物流階段測試試題及答案
- 進(jìn)口中藥資質(zhì)要求及申報手續(xù)
- 新時代高職英語(基礎(chǔ)模塊)Unit1
- 初中研究性學(xué)習(xí)報告(通用17篇)
- MBTI性格測評-課件
- 校園危化品安全主題班會
- 輸尿管結(jié)石課件
- 口腔牙體牙髓病例展示
評論
0/150
提交評論