2023年曲阜遠(yuǎn)東職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年曲阜遠(yuǎn)東職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年曲阜遠(yuǎn)東職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年曲阜遠(yuǎn)東職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年曲阜遠(yuǎn)東職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年曲阜遠(yuǎn)東職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.給出以下變量①吸煙,②性別,③宗教信仰,④國籍,其中屬于分類變量的有______.答案:①因?yàn)槲鼰煵皇欠诸愖兞?,是否吸煙才是分類變量,其他②③④屬于分類變量.故為:②③④?.若a=0.30.2,b=20.4,c=0.30.3,則a,b,c三個(gè)數(shù)的大小關(guān)系是:______(用符號(hào)“>”連接這三個(gè)字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故為:b>a>c.3.不等式的解集是(

A.

B.

C.

D.答案:D4.已知命題p:?x∈R,x2-x+1>0,則命題¬p

是______.答案:∵命題p:?x∈R,x2-x+1>0,∴命題p的否定是“?x∈R,x2-x+1≤0”故為:?x∈R,x2-x+1≤0.5.刻畫數(shù)據(jù)的離散程度的度量,下列說法正確的是(

(1)應(yīng)充分利用所得的數(shù)據(jù),以便提供更確切的信息;

(2)可以用多個(gè)數(shù)值來刻畫數(shù)據(jù)的離散程度;

(3)對(duì)于不同的數(shù)據(jù)集,其離散程度大時(shí),該數(shù)值應(yīng)越?。?/p>

A.(1)和(3)

B.(2)和(3)

C.(1)和(2)

D.都正確答案:C6.在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為有理數(shù)的點(diǎn)稱為有理點(diǎn).試根據(jù)這一定義,證明下列命題:若直線y=kx+b(k≠0)經(jīng)過點(diǎn)M(2,1),則此直線不能經(jīng)過兩個(gè)有理點(diǎn).答案:證明:假設(shè)此直線上有兩個(gè)有理點(diǎn)A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均為有理數(shù),則有y1=kx1+b,y2=kx2+b,兩式相減,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理數(shù)經(jīng)過四則運(yùn)算后還是有理數(shù),故k為有理數(shù).又由y1=kx1+b知,b也是有理數(shù).又∵點(diǎn)M(2,1)在此直線上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端為無理數(shù),右端為有理數(shù),顯然矛盾,故此直線不能經(jīng)過兩個(gè)有理點(diǎn).7.過點(diǎn)A(0,2),且與拋物線C:y2=6x只有一個(gè)公共點(diǎn)的直線l有()條.A.1B.2C.3D.4答案:∵點(diǎn)A(0,2)在拋物線y2=6x的外部,∴與拋物線C:y2=6x只有一個(gè)公共點(diǎn)的直線l有三條,有兩條直線與拋物線相切,有一條直線與拋物線的對(duì)稱軸平行,故選C.8.曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程______.答案:設(shè)P(x,y)是曲線y=log2x上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣M=0110對(duì)應(yīng)變換作用下新曲線上的對(duì)應(yīng)點(diǎn),則x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)將x=y′y=x′代入曲線y=log2x,得x′=log2y′,(8分)即y′=2x′曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程y=2x故為:y=2x9.直線2x+y-3=0與直線3x+9y+1=0的夾角是()

A.

B.a(chǎn)rctan2

C.

D.答案:C10.在平面直角坐標(biāo)系xOy中,若拋物線C:x2=2py(p>0)的焦點(diǎn)為F(q,1),則p+q=______.答案:拋物線C:x2=2py(p>0)的焦點(diǎn)坐標(biāo)為(0,p2),又已知焦點(diǎn)為為F(q,1),∴q=0,p2=1,故p+q=2,故為2.11.直線y=x-1的傾斜角是()

A.30°

B.120°

C.60°

D.150°答案:A12.若施化肥量x與小麥產(chǎn)量y之間的回歸方程為y=250+4x(單位:kg),當(dāng)施化肥量為50kg時(shí),預(yù)計(jì)小麥產(chǎn)量為______kg.答案:根據(jù)回歸方程為y=250+4x,當(dāng)施化肥量為50kg,即x=50kg時(shí),y=250+4x=250+200=450kg故為:45013.已知m2+n2=1,a2+b2=2,則am+bn的最大值是()

A.1

B.

C.

D.以上都不對(duì)答案:C14.若f(x)=exx≤0lnxx>0,則f(f(12))=______.答案:∵f(x)=ex,x≤0lnx,x>0,∴f(f(12))=f(ln12)=eln12=12.故為:12.15.方程cos2x=x的實(shí)根的個(gè)數(shù)為

______個(gè).答案:cos2x=x的實(shí)根即函數(shù)y=cos2x與y=x的圖象交點(diǎn)的橫坐標(biāo),故可以將求根個(gè)數(shù)的問題轉(zhuǎn)化為求兩個(gè)函數(shù)圖象的交點(diǎn)個(gè)數(shù).如圖在同一坐標(biāo)系中作出y=cos2x與y=x的圖象,由圖象可以看出兩圖象只有一個(gè)交點(diǎn),故方程的實(shí)根只有一個(gè).故應(yīng)該填

1.16.某學(xué)生離家去學(xué)校,由于怕遲到,所以一開始就跑步,等跑累了再走余下的路程.

在如圖中縱軸表示離學(xué)校的距離,橫軸表示出發(fā)后的時(shí)間,則如圖中的四個(gè)圖形中較符合該學(xué)生走法的是()A.

B.

C.

D.

答案:由題意可知:由于怕遲到,所以一開始就跑步,所以剛開始離學(xué)校的距離隨時(shí)間的推移應(yīng)該相對(duì)較快.而等跑累了再走余下的路程,則說明離學(xué)校的距離隨時(shí)間的推移在后半段時(shí)間應(yīng)該相對(duì)較慢.所以適合的圖象為:故選B.17.設(shè)圓O1和圓O2是兩個(gè)定圓,動(dòng)圓P與這兩個(gè)定圓都相切,則圓P的圓心軌跡不可能是()

A.

B.

C.

D.

答案:A18.“因?yàn)閷?duì)數(shù)函數(shù)y=logax是增函數(shù)(大前提),而y=logx是對(duì)數(shù)函數(shù)(小前提),所以y=logx是增函數(shù)(結(jié)論).”上面推理的錯(cuò)誤是()

A.大前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)

B.小前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)

C.推理形式錯(cuò)導(dǎo)致結(jié)論錯(cuò)

D.大前提和小前提都錯(cuò)導(dǎo)致結(jié)論錯(cuò)答案:A19.如圖,圓與圓內(nèi)切于點(diǎn),其半徑分別為與,圓的弦交圓于點(diǎn)(不在上),求證:為定值。

答案:見解析解析:考察圓的切線的性質(zhì)、三角形相似的判定及其性質(zhì),容易題。證明:由弦切角定理可得20.有一個(gè)正四棱錐,它的底面邊長與側(cè)棱長均為a,現(xiàn)用一張正方形包裝紙將其完全包?。ú荒懿眉艏?,但可以折疊),那么包裝紙的最小邊長應(yīng)為()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由題意可知:當(dāng)正四棱錐沿底面將側(cè)面都展開時(shí)如圖所示:分析易知當(dāng)以PP′為正方形的對(duì)角線時(shí),所需正方形的包裝紙的面積最小,此時(shí)邊長最?。O(shè)此時(shí)的正方形邊長為x則:(PP′)2=2x2,又因?yàn)镻P′=a+2×32a=a+3a,∴(

a+3a)2=2x2,解得:x=6+22a.故選A21.在平面直角坐標(biāo)系xOy中,設(shè)P(x,y)是橢圓上的一個(gè)動(dòng)點(diǎn),則S=x+y的最大值是()

A.1

B.2

C.3

D.4答案:B22.用數(shù)學(xué)歸納法證明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n.1).答案:證明:(1)當(dāng)n=2時(shí),左邊=12+13+14=1312>1,∴n=2時(shí)成立(2分)(2)假設(shè)當(dāng)n=k(k≥2)時(shí)成立,即1k+1k+1+1k+2+…+1k2>1那么當(dāng)n=k+1時(shí),左邊=1k+1+1k+2+1k+3+…+1(k+1)2=1k+1k+1+1k+2+1k+3+…+1k2+2k+1(k+1)2-1k>1+1k2+1+1k2+2+…+1(k+1)2-1k>1+(2k+1)?1(k+1)2-1k>1+k2-k-1k2+2k+1>1∴n=k+1時(shí)也成立(7分)根據(jù)(1)(2)可得不等式對(duì)所有的n>1都成立(8分)23.如圖給出的是計(jì)算1+13+15+…+12013的值的一個(gè)程序框圖,圖中空白執(zhí)行框內(nèi)應(yīng)填入i=______.答案:∵該程序的功能是計(jì)算1+13+15+…+12013的值,最后一次進(jìn)入循環(huán)的終值為2013,即小于等于2013的數(shù)滿足循環(huán)條件,大于2013的數(shù)不滿足循環(huán)條件,由循環(huán)變量的初值為1,步長為2,故執(zhí)行框中應(yīng)該填的語句是:i=i+2.故為:i+2.24.選修4-2:矩陣與變換

已知矩陣A=33cd,若矩陣A屬于特征值6的一個(gè)特征向量為α1=11,屬于特征值1的一個(gè)特征向量為α2=3-2.求矩陣A的逆矩陣.答案:由矩陣A屬于特征值6的一個(gè)特征向量為α1=11,可得33cd11=611,即c+d=6;由矩陣A屬于特征值1的一個(gè)特征向量為α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩陣是23-12-1312.25.已知A(1,0).B(7,8),若點(diǎn)A和點(diǎn)B到直線l的距離都為5,且滿足上述條件的直線l共有n條,則n的值是()A.1B.2C.3D.4答案:與直線AB平行且到直線l的距離都為5的直線共有兩條,分別位于直線AB的兩側(cè),由線段AB的長度等于10,還有一條直線是線段AB的中垂線,故滿足上述條件的直線l共有3條,故選C.26.已知圓柱與圓錐的底面積相等,高也相等,它們的體積分別為V1和V2,則V1:V2=()A.1:3B.1:1C.2:1D.3:1答案:設(shè)圓柱,圓錐的底面積為S,高為h,則由柱體,錐體的體積公式得:V1:V2=(Sh):(13Sh)=3:1故選D.27.某人從家乘車到單位,途中有3個(gè)交通崗?fù)ぃ僭O(shè)在各交通崗遇到紅燈的事件是相互獨(dú)立的,且概率都是0.4,則此人上班途中遇紅燈的次數(shù)的期望為()

A.0.4

B.1.2

C.0.43

D.0.6答案:B28.賦值語句M=M+3表示的意義()

A.將M的值賦給M+3

B.將M的值加3后再賦給M

C.M和M+3的值相等

D.以上說法都不對(duì)答案:B29.已知變量a,b已被賦值,要交換a、b的值,應(yīng)采用的算法是()

A.a(chǎn)=b,b=a

B.a(chǎn)=c,b=a,c=b

C.a(chǎn)=c,b=a,c=a

D.c=a,a=b,b=c答案:D30.設(shè)α和β為不重合的兩個(gè)平面,給出下列命題:

(1)若α內(nèi)的兩條相交直線分別平行于β內(nèi)的兩條直線,則α平行于β;

(2)若α外一條直線l與α內(nèi)的一條直線平行,則l和α平行;

(3)設(shè)α和β相交于直線l,若α內(nèi)有一條直線垂直于l,則α和β垂直;

(4)直線l與α垂直的充分必要條件是l與α內(nèi)的兩條直線垂直.

上面命題,真命題的序號(hào)是______(寫出所有真命題的序號(hào))答案:由面面平行的判定定理可知,(1)正確.由線面平行的判定定理可知,(2)正確.對(duì)于(3)來說,α內(nèi)直線只垂直于α和β的交線l,得不到其是β的垂線,故也得不出α⊥β.對(duì)于(4)來說,l只有和α內(nèi)的兩條相交直線垂直,才能得到l⊥α.也就是說當(dāng)l垂直于α內(nèi)的兩條平行直線的話,l不一定垂直于α.31.下列4個(gè)命題

㏒1/2x>㏒1/3x

其中的真命題是()

、A.(B.C.D.答案:D解析:取x=,則=1,=<1,p2正確當(dāng)x∈(0,)時(shí),()x<1,而>1.p4正確32.已知A(-4,6,-1),B(4,3,2),則下列各向量中是平面AOB(O是坐標(biāo)原點(diǎn))的一個(gè)法向量的是()A.(0,1,6)B.(-1,2,-1)C.(-15,4,36)D.(15,4,-36)答案:設(shè)平面AOB(O是坐標(biāo)原點(diǎn))的一個(gè)法向量是u=(x,y,z)則u?OA=0u?OB=0,即-4x+6y-z=04x+3y+2z=0,令x=-1,解得x=-1y=2z=-1,故u=(-1,2,-1),故選B.33.平面上動(dòng)點(diǎn)M到定點(diǎn)F(3,0)的距離比M到直線l:x+1=0的距離大2,則動(dòng)點(diǎn)M滿足的方程()

A.x2=6y

B.x2=12y

C.y2=6x

D.y2=12x答案:D34.知x、y、z均為實(shí)數(shù),

(1)若x+y+z=1,求證:++≤3;

(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)證明略(2)x2+y2+z2的最小值為解析:(1)證明

因?yàn)椋?+)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.

7分(2)解

因?yàn)?12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值為.

14分35.設(shè)A1,A2,A3,A4是平面直角坐標(biāo)系中兩兩不同的四點(diǎn),若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,則稱A3,A4調(diào)和分割A(yù)1,A2,已知點(diǎn)C(c,0),D(d,O)(c,d∈R)調(diào)和分割點(diǎn)A(0,0),B(1,0),則下面說法正確的是()A.C可能是線段AB的中點(diǎn)B.D可能是線段AB的中點(diǎn)C.C,D可能同時(shí)在線段AB上D.C,D不可能同時(shí)在線段AB的延長線上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是線段AB的中點(diǎn),則c=12,代入(1)d不存在,故C不可能是線段AB的中,A錯(cuò)誤;同理B錯(cuò)誤;若C,D同時(shí)在線段AB上,則0≤c≤1,0≤d≤1,代入(1)得c=d=1,此時(shí)C和D點(diǎn)重合,與條件矛盾,故C錯(cuò)誤.故選D36.i是虛數(shù)單位,a,b∈R,若ia+bi=1+i,則a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化為b+ai=(a2+b2)+(a2+b2)i,根據(jù)復(fù)數(shù)相等的定義可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故為1.37.下列命題中為真命題的是(

A.平行直線的傾斜角相等

B.平行直線的斜率相等

C.互相垂直的兩直線的傾斜角互補(bǔ)

D.互相垂直的兩直線的斜率互為相反數(shù)答案:A38.某科目考試有30道題每小題有三個(gè)選項(xiàng),每題2分,另有20道題,每題有四個(gè)選項(xiàng)每題3分,每題只有一個(gè)答案,某人隨機(jī)去選答案,則平均能得______分.答案:由題意,30道題每小題有三個(gè)選項(xiàng),每題2分,每題只有一個(gè),某人隨機(jī)去選,則可得2×30×13=20分;20道題,每題有四個(gè)選項(xiàng)每題3分,每題只有一個(gè),某人隨機(jī)去選,則可得3×20×14=15分故平均能得35分故為:35分.39.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若向量OB=a100OA+a101OC,且A、B、C三點(diǎn)共線(該直線不過點(diǎn)O),則S200等于______.答案:由題意可知:向量OB=a100OA+a101OC,又∵A、B、C三點(diǎn)共線,則a100+a101=1,等差數(shù)列前n項(xiàng)的和為Sn=(a1+an)?n

2,∴S200=(a1+a200)×200

2=(a100+

a101)×2002=100,故為100.40.如果輸入2,那么執(zhí)行圖中算法的結(jié)果是()A.輸出2B.輸出3C.輸出4D.程序出錯(cuò),輸不出任何結(jié)果答案:第一步:輸入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:輸出4故為C.41.下列各式中錯(cuò)誤的是()

A.||2=2

B.||=||

C.0?=0

D.m(n)=mn(m,n∈R)答案:C42.用反證法證明命題:“三角形的內(nèi)角中至少有一個(gè)不大于60度”時(shí),假設(shè)正確的是()

A.假設(shè)三內(nèi)角都不大于60度

B.假設(shè)三內(nèi)角都大于60度

C.假設(shè)三內(nèi)角至多有一個(gè)大于60度

D.假設(shè)三內(nèi)角至多有兩個(gè)大于60度答案:B43.設(shè)橢圓的左焦點(diǎn)為F,AB為橢圓中過點(diǎn)F的弦,試分析以AB為直徑的圓與橢圓的左準(zhǔn)線的位置關(guān)系.答案:設(shè)M為弦AB的中點(diǎn)(即以AB為直徑的圓的圓心),A1、B1、M1分別是A、B、M在準(zhǔn)線l上的射影(如圖).由圓錐曲線的共同性質(zhì)得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB為直徑的圓與左準(zhǔn)線相離.44.一個(gè)類似于細(xì)胞分裂的物體,一次分裂為二,兩次分裂為四,如此繼續(xù)分裂有限多次,而隨機(jī)終止.設(shè)分裂n次終止的概率是(n=1,2,3,…).記X為原物體在分裂終止后所生成的子塊數(shù)目,則P(X≤10)=()

A.

B.

C.

D.以上均不對(duì)答案:A45.某學(xué)校高一、高二、高三共有學(xué)生3500人,其中高三學(xué)生數(shù)是高一學(xué)生數(shù)的兩倍,高二學(xué)生數(shù)比高一學(xué)生數(shù)多300人,現(xiàn)在按的抽樣比用分層抽樣的方法抽取樣本,則應(yīng)抽取高一學(xué)生數(shù)為()

A.8

B.11

C.16

D.10答案:A46.一部記錄影片在4個(gè)單位輪映,每一單位放映一場,則不同的輪映方法數(shù)有()A.16B.44C.A44D.43答案:本題可以看做把4個(gè)單位看成四個(gè)位置,在四個(gè)位置進(jìn)行全排列,故有A44種結(jié)果,故選C.47.直線x=-3+ty=1-t(t是參數(shù))被圓x=5cosθy=5sinθ(θ是參數(shù))所截得的弦長是______.答案:把直線和圓的參數(shù)方程化為普通方程得:直線x+y+2=0,圓x2+y2=25,畫出函數(shù)圖象,如圖所示:過圓心O(0,0)作OC⊥AB,根據(jù)垂徑定理得到:AC=BC=12AB,連接OA,則|OA|=5,且圓心O到直線x+y+2=0的距離|OC|=|2|2=2,在直角△ACO中,根據(jù)勾股定理得:AC=23,所以AB=223,則直線被圓截得的弦長為223.故為:22348.雙曲線(n>1)的兩焦點(diǎn)為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P

F1F2的面積為()

A.

B.1

C.2

D.4答案:B49.已知=(1,2),=(-3,2),k+與-3垂直時(shí),k的值為(

A.17

B.18

C.19

D.20答案:C50.已知圓的極坐標(biāo)方程ρ=2cosθ,直線的極坐標(biāo)方程為ρcosθ-2ρsinθ+7=0,則圓心到直線距離為

______.答案:由ρ=2cosθ?ρ2=2ρcosθ?x2+y2-2x=0?(x-1)2+y2=1,ρcosθ-2ρsinθ+7=0?x-2y+7=0,∴圓心到直線距離為:d=1-2×0+712+22=855.故為:855.第2卷一.綜合題(共50題)1.設(shè)隨機(jī)變量ζ~N(2,p),隨機(jī)變量η~N(3,p),若,則P(η≥1)=()

A.

B.

C.

D.答案:D2.設(shè)集合A={1,2,4},B={2,6},則A∪B等于()A.{2}B.{1,2,4,6}C.{1,2,4}D.{2,6}答案:∵集合A={1,2,4},B={2,6},∴A∪B={1,2,4}∪{2,6}={1,2,4,6},故選B.3.如圖,四邊形OABC是邊長為1的正方形,OD=3,點(diǎn)P為△BCD內(nèi)(含邊界)的動(dòng)點(diǎn),設(shè)(α,β∈R),則α+β的最大值等于

()

A.

B.

C.

D.1

答案:B4.已知一次函數(shù)y=(2k-4)x-1在R上是減函數(shù),則k的取值范圍是()A.k>2B.k≥2C.k<2D.k≤2答案:因?yàn)楹瘮?shù)y=(2k-4)x-1為R上是減函數(shù)?該一次函數(shù)的一次項(xiàng)的系數(shù)為負(fù)?2k-4<0?k<2.故為:C5.若集合A={x|3≤x<7},B={x|2<x<10},則A∪B=______.答案:因?yàn)榧螦={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故為:{x|2<x<10}.6.三直線ax+2y+8=0,4x+3y=10,2x-y=10相交于一點(diǎn),則a的值是(

A.-2

B.-1

C.0

D.1答案:B7.已知A(1,2),B(-3,b)兩點(diǎn)的距離等于42,則b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故為:6或-28.若21-i=a+bi(i為虛數(shù)單位,a,b∈R),則a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故為:29.集合{1,2,3}的真子集的個(gè)數(shù)為()A.5B.6C.7D.8答案:集合的真子集為{1},{2},{3},{1,2},{1,3},{2,3},?.共有7個(gè).故選C.10.若0<x<1,則2x,(12)x,(0.2)x之間的大小關(guān)系為()A.2x<(0.2)x<(12)xB.2x<(12)x<(0.2)xC.(12)x<(0.2)x<2xD.(0.2)x<(12)x<2x答案:由題意考察冪函數(shù)y=xn(0<n<1),利用冪函數(shù)的性質(zhì),∵0<n<1,∴冪函數(shù)y=xn在第一象限是增函數(shù),又2>12>0.2∴2x>(12)x>(0.2)x故選D11.與函數(shù)y=x相等的函數(shù)是()A.f(x)=(x)2B.f(x)=x2xC.f(x)=x2D.f(x)=3x3答案:對(duì)于A,f(x)=x(x≥0),不符合;對(duì)于B,f(x)=x(x≠0),不符合;對(duì)于C,f(x)=|x|(x∈R),不符合;對(duì)于D,f(x)=x(x∈R),符合;故選D.12.已知在一個(gè)二階矩陣M對(duì)應(yīng)變換的作用下,點(diǎn)A(1,2)變成了點(diǎn)A′(7,10),點(diǎn)B(2,0)變成了點(diǎn)B′(2,4),求矩陣M.答案:設(shè)M=abcd,則abcd12=710,abcd20=24,(4分)即a+2b=7c+2d=102a=22c=4,解得a=1b=3c=2d=4(8分)所以M=1234.(10分)13.棱長為2的正方體ABCD-A1B1C1D1中,BC1?B1D1=()A.22B.4C.-22D.-4答案:棱長為2的正方體ABCD-A1B1C1D1中,BC1與

B1D1的夾角等于BC1與BD的夾角,等于60°.∴BC1?B1D1=22×22cos60°=4,故選B.14.已知=(3,4),=(5,12),與則夾角的余弦為()

A.

B.

C.

D.答案:A15.已知G是△ABC的重心,過G的一條直線交AB、AC兩點(diǎn)分別于E、F,且有AE=λAB,AF=μAC,則1λ+1μ=______.答案:∵G是△ABC的重心∴取過G平行BC的直線EF∵AE=λAB,AF=μAC∴λ=23,μ=23∴1λ+1μ=32+32=3故為316.用隨機(jī)數(shù)表法進(jìn)行抽樣有以下幾個(gè)步驟:①將總體中的個(gè)體編號(hào);②獲取樣本號(hào)碼;③選定開始的數(shù)字,這些步驟的先后順序應(yīng)為()A.①②③B.③②①C.①③②D.③①②答案:∵隨機(jī)數(shù)表法進(jìn)行抽樣,包含這樣的步驟,①將總體中的個(gè)體編號(hào);②選定開始的數(shù)字,按照一定的方向讀數(shù);③獲取樣本號(hào)碼,∴把題目條件中所給的三項(xiàng)排序?yàn)椋孩佗邰冢蔬xC.17.(不等式選講選做題)已知a,b,c∈R+,且a+b+c=1,則3a+1+3b+1+3c+1的最大值為______.答案:根據(jù)柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18當(dāng)且僅當(dāng)3a+1=3b+1=3c+1),即a=b=c=13時(shí),(3a+1+3b+1+3c+1)2的最大值為18因此3a+1+3b+1+3c+1的最大值為32.故為:3218.已知向量,,,則(

)A.B.C.5D.25答案:C解析:將平方即可求得C.19.4位學(xué)生與2位教師并坐合影留念,針對(duì)下列各種坐法,試問:各有多少種不同的坐法?(用數(shù)字作答)

(1)教師必須坐在中間;

(2)教師不能坐在兩端,但要坐在一起;

(3)教師不能坐在兩端,且不能相鄰.答案:(1)先排4位學(xué)生,有A44種坐法,2位教師坐在中間,可以交換位置,有A22種坐法,則共有A22A44=48種坐法;(2)先排4位學(xué)生,有A44種坐法,2位教師坐在一起,將其看成一個(gè)整體,可以交換位置,有2種坐法,將這個(gè)“整體”插在4個(gè)學(xué)生的空位中,又由教師不能坐在兩端,則有3個(gè)空位可選,則共有2A44A31=144種坐法;(3)先排4位學(xué)生,有A44種坐法,教師不能相鄰,將其依次插在4個(gè)學(xué)生的空位中,又由教師不能坐在兩端,則有3個(gè)空位可選,有A32種坐法,則共有A44A32=144種坐法..20.已知一直線的斜率為3,則這條直線的傾斜角是()A.30°B.45°C.60°D.90°答案:設(shè)直線的傾斜角為α,由直線的斜率為3,得到:tanα=3,又α∈(0,180°),所以α=60°.故選C21.用WHILE語句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While

i<=63s=s+2^ii=i+1WendPrint

send22.在班級(jí)隨機(jī)地抽取8名學(xué)生,得到一組數(shù)學(xué)成績與物理成績的數(shù)據(jù):

數(shù)學(xué)成績6090115809513580145物理成績4060754070856090(1)計(jì)算出數(shù)學(xué)成績與物理成績的平均分及方差;

(2)求相關(guān)系數(shù)r的值,并判斷相關(guān)性的強(qiáng)弱;(r≥0.75為強(qiáng))

(3)求出數(shù)學(xué)成績x與物理成績y的線性回歸直線方程,并預(yù)測(cè)數(shù)學(xué)成績?yōu)?10的同學(xué)的物理成績.答案:(1)計(jì)算出數(shù)學(xué)成績與物理成績的平均分及方差;.x=100,.y=65,數(shù)學(xué)成績方差為750,物理成績方差為306.25;(4分)(2)求相關(guān)系數(shù)r的值,并判斷相關(guān)性的強(qiáng)弱;r=6675≈0.94>0.75,相關(guān)性較強(qiáng);(8分)(3)求出數(shù)學(xué)成績x與物理成績y的線性回歸直線方程,并預(yù)測(cè)數(shù)學(xué)成績?yōu)?10的同學(xué)的物理成績.y=0.6x+5,預(yù)測(cè)數(shù)學(xué)成績?yōu)?10的同學(xué)的物理成績?yōu)?1.(12分)23.(理)在直角坐標(biāo)系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,則圓C的圓心極坐標(biāo)為______.答案:∵直角坐標(biāo)系中,圓C的參數(shù)方程是x=2cosθy=2+2sinθ(θ為參數(shù)),∴x2+(y-2)2=4,∵以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,∴圓心坐標(biāo)(0,2),r=2∵0=pcosθ,∴θ=π2,又p=r=2,∴圓C的圓心極坐標(biāo)為(2,π2),故為:(2,π2).24.圓x2+y2-4x=0,在點(diǎn)P(1,)處的切線方程為()

A.x+y-2=0

B.x+y-4=0

C.x-y+4=0

D.x-y+2=0答案:D25.

若平面向量,,兩兩所成的角相等,||=||=1,||=3,則|++|=()

A.2

B.4

C.2或5

D.4或5答案:C26.k取何值時(shí),一元二次方程kx2+3kx+k=0的兩根為負(fù)。答案:解:∴k≤或k>327.已知矩陣A=b-2-7a的逆矩陣是B=a273,則a+b=______.答案:根據(jù)矩陣A=b-2-7a的逆矩陣是B=a273,得a273b-2-7a=1001,∴ab-14=1-2a+2a=07b-21=0-14+3a=1,解得a=5b=3∴a+b=8.故為:8.28.已知圓x2+y2=r2在曲線|x|+|y|=4的內(nèi)部,則半徑r的范圍是()A.0<r<22B.0<r<2C.0<r<2D.0<r<4答案:根據(jù)題意畫出圖形,如圖所示:可得曲線|x|+|y|=4表示邊長為42的正方形,如圖ABCD為正方形,x2+y2=r2表示以原點(diǎn)為圓心的圓,過O作OE⊥AB,∵邊AB所在直線的方程為x+y=4,∴|OE|=42=22,則滿足題意的r的范圍是0<r<22.故選A29.在四邊形ABCD中,若=+,則()

A.ABCD為矩形

B.ABCD是菱形

C.ABCD是正方形

D.ABCD是平行四邊形答案:D30.直線(t為參數(shù))的傾斜角等于()

A.

B.

C.

D.答案:A31.已知函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集為R.則實(shí)數(shù)K的取值范圍為______.答案:因?yàn)楹瘮?shù)f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的幾何意義是數(shù)軸上的點(diǎn)到-2與到3距離的差再減去3,它的最大值為2,不等式f(x)-g(x)≤K的解集為R.所以K≥2.故為:[2,+∞).32.在空間直角坐標(biāo)系中,已知兩點(diǎn)P1(-1,3,5),P2(2,4,-3),則|P1P2|=()

A.

B.3

C.

D.答案:A33.某廠一批產(chǎn)品的合格率是98%,檢驗(yàn)單位從中有放回地隨機(jī)抽取10件,則計(jì)算抽出的10件產(chǎn)品中正品數(shù)的方差是______.答案:用X表示抽得的正品數(shù),由于是有放回地隨機(jī)抽取,所以X服從二項(xiàng)分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故為:0.196.34.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表

廣告費(fèi)用x(萬元)4235銷售額y(萬元)49263954根據(jù)上表可得回歸方程

y=

bx+

a中的

b為9.4,則

a=______.答案:由圖表中的數(shù)據(jù)可知.x=14(4+2+3+5)=144=3.5,.y=14(49+26+39+54)=42,即樣本中心為(3.5,42),將點(diǎn)代入回歸方程y=bx+a,得42=9.4×3.5+a,解得a=9.1.故為:9.1.35.如圖,在正方體ABCD-A1B1C1D1中,M、N分別為AB、B1C的中點(diǎn).用AB、AD、AA1表示向量MN,則MN=______.答案:∵M(jìn)N=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故為12AB+12AD+12AA1.36.若矩陣A=

72

69

67

65

62

59

81

74

68

64

59

52

85

79

76

72

69

64

228

219

211

204

195

183

是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()

A.語文

B.?dāng)?shù)學(xué)

C.外語

D.都一樣答案:B37.已知集合A={1,3,5,7,9},B={0,3,6,9,12},則A∩B=()A.{3,5}B.{3,6}C.{3,7}D.{3,9}答案:因?yàn)锳∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9}故選D38.已知曲線x2a+y2b=1和直線ax+by+1=0(a,b為非零實(shí)數(shù)),在同一坐標(biāo)系中,它們的圖形可能是()A.

B.

C.

D.

答案:A選項(xiàng)中,直線的斜率大于0,故系數(shù)a,b的符號(hào)相反,此時(shí)曲線應(yīng)是雙曲線,故不對(duì);B選項(xiàng)中直線的斜率小于0,故系數(shù)a,b的符號(hào)相同且都為負(fù),此時(shí)曲線不存在,故不對(duì);C選項(xiàng)中,直線斜率為正,故系數(shù)a,b的符號(hào)相反,且a正,b負(fù),此時(shí)曲線應(yīng)是焦點(diǎn)在x軸上的雙曲線,圖形符合結(jié)論,可選;D選項(xiàng)中不正確,由C選項(xiàng)的判斷可知D不正確.故選D39.兩條平行線l1:3x+4y-2=0,l2:9x+12y-10=0間的距離等于()

A.

B.

C.

D.答案:C40.參數(shù)方程(θ為參數(shù))表示的曲線為()

A.圓的一部分

B.橢圓的一部分

C.雙曲線的一部分

D.拋物線的一部分答案:D41.在測(cè)量某物理量的過程中,因儀器和觀察的誤差,使得n次測(cè)量分別得到a1,a2,…,an,共n個(gè)數(shù)據(jù).我們規(guī)定所測(cè)量的“量佳近似值”a是這樣一個(gè)量:與其他近似值比較,a與各數(shù)據(jù)的差的平方和最?。来艘?guī)定,從a1,a2,…,an推出的a=______.答案:∵所測(cè)量的“量佳近似值”a是與其他近似值比較,a與各數(shù)據(jù)的差的平方和最?。鶕?jù)均值不等式求平方和的最小值知這些數(shù)的底數(shù)要盡可能的接近,∴a是所有數(shù)字的平均數(shù),∴a=a1+a2+…+ann,故為:a1+a2+…+ann42.若點(diǎn)A(1,2,3),B(-3,2,7),且AC+BC=0,則點(diǎn)C的坐標(biāo)為______.答案:設(shè)C(x,y,z),則AC+BC=(2x+2,2y-4,2z-10)=0,∴x=-1,y=2,z=5.故為(-1,2,5)43.已知a≠0,證明關(guān)于x的方程ax=b有且只有一個(gè)根.答案:證明:一方面,∵ax=b,且a≠0,方程兩邊同除以a得:x=ba,∴方程ax=b有一個(gè)根x=ba,另一方面,假設(shè)方程ax=b還有一個(gè)根x0且x0≠ba,則由此不等式兩邊同乘以a得ax0≠b,這與假設(shè)矛盾,故方程ax=b只有一個(gè)根.綜上所述,方程ax=b有且只有一個(gè)根.44.鐵路托運(yùn)行李,從甲地到乙地,按規(guī)定每張客票托運(yùn)行李不超過50kg時(shí),每千克0.2元,超過50kg時(shí),超過部分按每千克0.25元計(jì)算,畫出計(jì)算行李價(jià)格的算法框圖.答案:程序框圖:45.已知點(diǎn)P的坐標(biāo)為(3,4,5),試在空間直角坐標(biāo)系中作出點(diǎn)P.答案:由P(3,4,5)可知點(diǎn)P在Ox軸上的射影為A(3,0,0),在Oy軸上射影為B(0,4,0),以O(shè)A,OB為鄰邊的矩形OACB的頂點(diǎn)C是點(diǎn)P在xOy坐標(biāo)平面上的射影C(3,4,0).過C作直線垂直于xOy坐標(biāo)平面,并在此直線的xOy平面上方截取5個(gè)單位,得到的就是點(diǎn)P.46.球的表面積與它的內(nèi)接正方體的表面積之比是()A.π3B.π4C.π2D.π答案:設(shè):正方體邊長設(shè)為:a則:球的半徑為3a2所以球的表面積S1=4?π?R2=4π34a2=3πa2而正方體表面積為:S2=6a2所以比值為:S1S2=π2故選C47.規(guī)定符號(hào)“△”表示一種運(yùn)算,即a△b=ab+a+b,其中a、b∈R+;若1△k=3,則函數(shù)f(x)=k△x的值域______.答案:1△k=k+1+k=3,解得k=1,∴k=1∴f(x)=k△x=kx+k+x=x+x+1對(duì)于x需x≥0,∴對(duì)于f(x)=x+x+1=(x+12)2+34≥1故函數(shù)f(x)的值域?yàn)閇1,+∞)故為:[1,+∞)48.如圖,l1、l2、l3是同一平面內(nèi)的三條平行直線,l1與l2間的距離是1,l2與l3間的距離是2,正三角形ABC的三頂點(diǎn)分別在l1、l2、l3上,則△ABC的邊長是()

A.2

B.

C.

D.

答案:D49.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時(shí),應(yīng)選用(

A.散點(diǎn)圖

B.莖葉圖

C.頻率分布直方圖

D.頻率分布折線圖答案:A50.(選做題)

曲線(θ為參數(shù))與直線y=a有兩個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是(

).答案:0<a≤1第3卷一.綜合題(共50題)1.正方體的全面積為18cm2,則它的體積是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:設(shè)正方體邊長是acm,根據(jù)題意得6a2=18,解得a=3,∴正方體的體積是33cm3.故選D.2.從1,2,…,9這九個(gè)數(shù)中,隨機(jī)抽取3個(gè)不同的數(shù),則這3個(gè)數(shù)的和為偶數(shù)的概率是()A.59B.49C.1121D.1021答案:基本事件總數(shù)為C93,設(shè)抽取3個(gè)數(shù),和為偶數(shù)為事件A,則A事件數(shù)包括兩類:抽取3個(gè)數(shù)全為偶數(shù),或抽取3數(shù)中2個(gè)奇數(shù)1個(gè)偶數(shù),前者C43,后者C41C52.∴A中基本事件數(shù)為C43+C41C52.∴符合要求的概率為C34+C14C25C39=1121.3.若一元二次方程x2+(a-1)x+1-a2=0有兩個(gè)正實(shí)數(shù)根,則a的取值范圍是(

A.(-1,1)

B.(-∞,)∪[1,+∞)

C.(-1,]

D.[,1)答案:C4.已知a,b,c,d都是正數(shù),S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,則S的取值范圍是______.答案:∵a,b,c,d都是正數(shù),∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故為:(1,2)5.不等式|x-2|+|x+1|<5的解集為()

A.(-∞,-2)∪(3,+∞)

B.(-∞,-1)∪(2,+∞)

C.(-2,3)

D.(-∞,+∞)答案:C6.命題“每一個(gè)素?cái)?shù)都是奇數(shù)”的否定是______.答案:原命題“每一個(gè)素?cái)?shù)都是奇數(shù)”是一個(gè)全稱命題它的否定是一個(gè)特稱命題,即“有的素?cái)?shù)不是奇數(shù)”故為:有的素?cái)?shù)不是奇數(shù)7.如果執(zhí)行如圖的程序框圖,那么輸出的S=______.答案:根據(jù)題意可知該循環(huán)體運(yùn)行4次第一次:i=2,s=4,第二次:i=3,s=10,第三次:i=4,s=22,第四次:i=5,s=46,因?yàn)閕=5>4,結(jié)束循環(huán),輸出結(jié)果S=46.故為:46.8.(文)函數(shù)f(x)=x+2x(x∈(0

,

2

]

)的值域是______.答案:f(x)=x+2x≥

22當(dāng)且僅當(dāng)x=2時(shí)取等號(hào)該函數(shù)在(0,2)上單調(diào)遞減,在(2,2]上單調(diào)遞增∴當(dāng)x=2時(shí)函數(shù)取最小值22,x趨近0時(shí),函數(shù)值趨近無窮大故函數(shù)f(x)=x+2x(x∈(0

2

]

)的值域是[22,+∞)故為:[22,+∞)9.已知0<α<π2,方程x2sinα+y2cosα=1表示焦點(diǎn)在y軸上的橢圓,則α的取值范圍______.答案:方程x2sinα+y2cosα=1化成標(biāo)準(zhǔn)形式得:x21sinα+y21cosα=1.∵方程表示焦點(diǎn)在y軸上的橢圓,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范圍是(π4,π2)故為:(π4,π2)10.一個(gè)多面體的三視圖分別是正方形、等腰三角形和矩形,其尺寸如圖,則該多面體的體積為()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三視圖可知該幾何體是平放的直三棱柱,高為4,底面三角形一邊長為6,此邊上的高為4體積V=Sh=12×6×4×4=48cm3故選A11.若隨機(jī)向一個(gè)半徑為1的圓內(nèi)丟一粒豆子(假設(shè)該豆子一定落在圓內(nèi)),則豆子落在此圓內(nèi)接正三角形內(nèi)的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內(nèi)接正三角形的邊長為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內(nèi)的概率P=334π=334π故為:334π12.試指出函數(shù)y=3x的圖象經(jīng)過怎樣的變換,可以得到函數(shù)y=(13)x+1+2的圖象.答案:把函數(shù)y=3x的圖象經(jīng)過3次變換,可得函數(shù)y=(13)x+1+2的圖象,步驟如下:y=3x沿y軸對(duì)稱y=(13)x左移一個(gè)單位y=(13)x+1上移2個(gè)單位y=(13)x+1+2.13.某細(xì)胞在培養(yǎng)過程中,每15分鐘分裂一次(由1個(gè)細(xì)胞分裂成2個(gè)),則經(jīng)過兩個(gè)小時(shí)后,1個(gè)這樣的細(xì)胞可以分裂成______個(gè).答案:由于每15分鐘分裂一次,則兩個(gè)小時(shí)共分裂8次.一個(gè)這樣的細(xì)胞經(jīng)過一次分裂后,由1個(gè)分裂成2個(gè);經(jīng)過2次分裂后,由1個(gè)分裂成22個(gè);…經(jīng)過8次分裂后,由1個(gè)分裂成28個(gè).∴1個(gè)這樣的細(xì)胞經(jīng)過兩個(gè)小時(shí)后,共分裂成28個(gè),即256個(gè).故為:25614.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(

)。答案:圓,雙曲線15.某商人將彩電先按原價(jià)提高40%,然后“八折優(yōu)惠”,結(jié)果是每臺(tái)彩電比原價(jià)多賺144元,那么每臺(tái)彩電原價(jià)是______元.答案:設(shè)每臺(tái)彩電原價(jià)是x元,由題意可得(1+40%)x?0.8-x=144,解得x=1200,故為1200.16.圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是

______,過這個(gè)圓外一點(diǎn)P(2,3)的該圓的切線方程是

______;答案:∵圓x=1+cosθy=1+sinθ(θ為參數(shù))消去參數(shù)θ,得:(x-1)2+(y-1)2=1,即圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是(x-1)2+(y-1)2=1;∵這個(gè)圓外一點(diǎn)P(2,3)的該圓的切線,當(dāng)切線斜率不存在時(shí),顯然x=2符合題意;當(dāng)切線斜率存在時(shí),設(shè)切線方程為:y-3=k(x-2),由圓心到切線的距離等于半徑,得|k-1+3-2k|k2+1=

1,解得:k=34,故切線方程為:3x-4y+6=0.故為:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.17.若f(x)=x2,則對(duì)任意實(shí)數(shù)x1,x2,下列不等式總成立的是(

)

A.f()≤

B.f()<

C.f()≥

D.f()>答案:A18.一個(gè)口袋中有紅球3個(gè),白球4個(gè).

(Ⅰ)從中不放回地摸球,每次摸2個(gè),摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),求恰好第2次中獎(jiǎng)的概率;

(Ⅱ)從中有放回地摸球,每次摸2個(gè),摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),連續(xù)摸4次,求中獎(jiǎng)次數(shù)X的數(shù)學(xué)期望E(X).答案:(I)“恰好第2次中獎(jiǎng)“即為“第一次摸到的2個(gè)白球,第二次至少有1個(gè)紅球”,其概率為C24C27×C23+C13C12C25=935;(II)摸一次中獎(jiǎng)的概率為p=C23+C13C14C27=57,由條件知X~B(4,p),∴EX=np=4×57=207.19.已知x、y的取值如下表:x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線性相關(guān),且回歸方程為y=0.95x+a,則a=______.答案:點(diǎn)(.x,.y)在回歸直線上,計(jì)算得.x=2,.y=4.5;代入得a=2.6;故為2.6.20.若雙曲線的漸近線方程為y=±3x,它的一個(gè)焦點(diǎn)是(10,0),則雙曲線的方程是______.答案:因?yàn)殡p曲線的漸近線方程為y=±3x,則設(shè)雙曲線的方程是x2-y29=λ,又它的一個(gè)焦點(diǎn)是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故為:x2-y29=121.證明不等式的最適合的方法是()

A.綜合法

B.分析法

C.間接證法

D.合情推理法答案:B22.已知x與y之間的一組數(shù)據(jù):

x0123y1357則y與x的線性回歸方程為y=bx+a必過點(diǎn)______.答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4,∴本組數(shù)據(jù)的樣本中心點(diǎn)是(1.5,4),∴y與x的線性回歸方程為y=bx+a必過點(diǎn)(1.5,4)故為:(1.5,4)23.若雙曲線與橢圓x216+y225=1有相同的焦點(diǎn),與雙曲線x22-y2=1有相同漸近線,求雙曲線方程.答案:依題意可設(shè)所求的雙曲線的方程為y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵雙曲線與橢圓x216+y225=1有相同的焦點(diǎn)∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴雙曲線的方程為y23-x26=1…(13分)24.不等式的解集

.答案:;解析:略25.已知直線ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為三邊長的三角形()

A.是銳角三角形

B.是鈍角三角形

C.是直角三角形

D.不存在答案:C26.如果隨機(jī)變量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,則P(ξ>2)等于()

A.0.1

B.0.2

C.0.3

D.0.4答案:A27.將包含甲、乙兩人的4位同學(xué)平均分成2個(gè)小組參加某項(xiàng)公益活動(dòng),則甲、乙兩名同學(xué)分在同一小組的概率為()

A.

B.

C.

D.答案:C28.參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為

______.答案:∵x=cosαy=1+sinα(α為參數(shù))∴x2+(y-1)2=cos2α+sin2α=1.即:參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為:x2+(y-1)2=1.故為:x2+(y-1)2=1.29.設(shè)空間兩個(gè)不同的單位向量

a=(x1,y1,0),

b=(x2,y2,0)與向量

c=(1,1,1)的夾角都等于45°.

(1)求x1+y1和x1y1的值;

(2)求<

a,

b>的大小.答案:(1)∵單位向量a=(x1,y1,0)與向量c=(1,1,1)的夾角等于45°∴|a|=x21+y21=1,cos45°=a?

c|a|?

|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°30.參數(shù)方程(θ為參數(shù))表示的曲線為()

A.圓的一部分

B.橢圓的一部分

C.雙曲線的一部分

D.拋物線的一部分答案:D31.求證:三個(gè)兩兩垂直的平面的交線兩兩垂直.答案:設(shè)三個(gè)互相垂直的平面分別為α、β、γ,且α∩β=a,β∩γ=b,γ∩α=c,三個(gè)平面的公共點(diǎn)為O,如圖所示:在平面γ內(nèi),除點(diǎn)O外,任意取一點(diǎn)M,且點(diǎn)M不在這三個(gè)平面中的任何一個(gè)平面內(nèi),過點(diǎn)M作MN⊥c,MP⊥b,M、P為垂足,則有平面和平面垂直的性質(zhì)可得MN⊥α,MP⊥β,∴a⊥MN,a⊥MP,∴a⊥平面γ.

再由b、c在平面γ內(nèi),可得a⊥b,a⊥c.同理可證,c⊥b,c⊥a,從而證得a、b、c互相垂直.32.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).試證:數(shù)列{xn}或者對(duì)任意自然數(shù)n都滿足xn<xn+1,或者對(duì)任意自然數(shù)n都滿足xn>xn+1.答案:證:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由數(shù)列{xn}的定義可知xn>0,(n=1,2,…)所以,xn+1-xn與1-xn2的符號(hào)相同.①假定x1<1,我們用數(shù)學(xué)歸納法證明1-xn2>0(n∈N)顯然,n=1時(shí),1-x12>0設(shè)n=k時(shí)1-xk2>0,那么當(dāng)n=k+1時(shí)1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,對(duì)一切自然數(shù)n都有1-xn2>0,從而對(duì)一切自然數(shù)n都有xn<xn+1②若x1>1,當(dāng)n=1時(shí),1-x12<0;設(shè)n=k時(shí)1-xk2<0,那么當(dāng)n=k+1時(shí)1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,對(duì)一切自然數(shù)n都有1-xn2<0,從而對(duì)一切自然數(shù)n都有xn>xn+133.用數(shù)字1,2,3,4,5組成的無重復(fù)數(shù)字的四位偶數(shù)的個(gè)數(shù)為()

A.8

B.24

C.48

D.120答案:C34.已知A,B,C三點(diǎn)不共線,O為平面ABC外一點(diǎn),若由向量OP=15OA+23OB+λOC確定的點(diǎn)P與A,B,C共面,那么λ=______.答案:由題意A,B,C三點(diǎn)不共線,點(diǎn)O是平面ABC外一點(diǎn),若由向量OP=15OA+23OB+λOC確定的點(diǎn)P與A,B,C共面,∴15+23+λ=1解得λ=215故為:21535.給出下列四個(gè)命題,其中正確的一個(gè)是()

A.在線性回歸模型中,相關(guān)指數(shù)R2=0.80,說明預(yù)報(bào)變量對(duì)解釋變量的貢獻(xiàn)率是80%

B.在獨(dú)立性檢驗(yàn)時(shí),兩個(gè)變量的2×2列聯(lián)表中對(duì)角線上數(shù)據(jù)的乘積相差越大,說明這兩個(gè)變量沒有關(guān)系成立的可能性就越大

C.相關(guān)指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越好

D.線性相關(guān)系數(shù)r的絕對(duì)值越接近于1,表明兩個(gè)隨機(jī)變量線性相關(guān)性越強(qiáng)答案:D36.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是()A.

B.

C.

D.

答案:根據(jù)函數(shù)的定義知:自變量取唯一值時(shí),因變量(函數(shù))有且只有唯一值與其相對(duì)應(yīng).∴從圖象上看,任意一條與x軸垂直的直線與函數(shù)圖象的交點(diǎn)最多只能有一個(gè)交點(diǎn).從而排除A,B,C,故選D.37.下列集合中,不同于另外三個(gè)集合的是()A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}答案:解析:A是列舉法,C是描述法,對(duì)于B要注意集合的代表元素是y,故與A,C相同,而D表示該集合含有一個(gè)元素,即方程“x=0”.故選D.38.如圖,在△ABC中,設(shè)AB=a,AC=b,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.

(Ⅰ)若AP=λa+μb,求λ和μ的值;

(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比S平行四邊形ANPMS△ABC.答案:(Ⅰ)∵在△ABC中,設(shè)AB=a,AC=b,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.AP=AR+AC2,AR=AQ+AB2,AQ=12AP,消去AR,AQ∵AP=λa+μb,可得AP=12(AQ+AB2)+12AC=14×12AP+14AB+12AC,可得AP=27AB+47AC=λa+μb,∴λ=27μ=47;(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線,作平行四邊形ANPM,∵得AP=27AB+47AC,∴S平行四邊形ANPMS平行四邊形ABC=|AN|?|AM|?sin∠CAB12|AB|?|AC|?sin∠CAB=2?|AN||AB|?|AM||AC|=2×27×47=1649;39.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.40.已知向量a=(3,4),b=(8

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論