版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年江西衛(wèi)生職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.設(shè)a,b,c是正實數(shù),求證:aabbcc≥(abc)a+b+c3.答案:證明:不妨設(shè)a≥b≥c>0,則lga≥lgb≥lgc.據(jù)排序不等式有:alga+blgb+clgc≥blga+clgb+algcalga+blgb+clgc≥clga+algb+blgcalga+blgb+clgc=alga+blgb+clgc上述三式相加得:3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc)即lg(aabbcc)≥a+b+c3lg(abc)故aabbcc≥(abc)a+b+c3.2.在我市新一輪農(nóng)村電網(wǎng)改造升級過程中,需要選一個電阻調(diào)試某村某設(shè)備的線路,但調(diào)試者手中必有阻值分別為0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七種阻值不等的定值電阻,他用分?jǐn)?shù)法進(jìn)行優(yōu)選試驗時,依次將電阻從小到大安排序號,如果第1個試點與第2個試點比較,第1個試點是一個好點,則第3個試點值的阻值為[
]A、1KΩ
B、1.3KΩ
C、5KΩ
D、1KΩ或5KΩ答案:C3.若一元二次方程ax2+2x+1=0有一個正根和一個負(fù)根,則有
A.a(chǎn)<0
B.a(chǎn)>0
C.a(chǎn)<-1
D.a(chǎn)>1答案:A4.過點(-3,-1),且與直線x-2y=0平行的直線方程為______.答案:直線l經(jīng)過點(-3,-1),且與直線x-2y=0平行,直線的斜率為12所以直線l的方程為:y+1=12(x+3)即x-2y+1=0.故為:x-2y+1=0.5.設(shè)集合A={1,2,4},B={2,6},則A∪B等于()A.{2}B.{1,2,4,6}C.{1,2,4}D.{2,6}答案:∵集合A={1,2,4},B={2,6},∴A∪B={1,2,4}∪{2,6}={1,2,4,6},故選B.6.已知二項分布ξ~B(4,12),則該分布列的方差Dξ值為______.答案:∵二項分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:17.若矩陣M=1101,則直線x+y+2=0在M對應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(x0,y0),(x,y)是所得的直線上一點,[1
1][x]=[x0][0
1][y]=[y0]∴x+y=x0y=y0,∴代入直線x+y+2=0方程:(x+y)+y+2=0得到I的方程x+2y+2=0故為:x+2y+2=0.8.到兩定點A(0,0),B(3,4)距離之和為5的點的軌跡是()
A.橢圓
B.AB所在直線
C.線段AB
D.無軌跡答案:C9.求證:答案:證明見解析解析:證明:此題采用了從第三項開始拆項放縮的技巧,放縮拆項時,不一定從第一項開始,須根據(jù)具體題型分別對待,即不能放的太寬,也不能縮的太窄,真正做到恰倒好處。10.(幾何證明選講選做題)已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓于點F,連接FB,F(xiàn)C.
(1)求證:FB=FC;
(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=33,求AD的長.答案:(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四邊形AFBC內(nèi)接于圓,∴∠DAC=∠FBC;
…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圓的直徑,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6
…10′11.如圖,曲線C1、C2、C3分別是函數(shù)y=ax、y=bx、y=cx的圖象,則()
A.a(chǎn)<b<c
B.a(chǎn)<c<B
C.c<b<a
D.b<c<a
答案:C12.2010年廣州亞運會乒乓球男單決賽中,馬龍與王皓在前三局的比分分別是9:11、11:8、11:7,已知馬琳與王皓的水平相當(dāng),比賽實行“七局四勝”制,即先贏四局者勝,求(1)王皓獲勝的概率;
(2)比賽打滿七局的概率.(3)記比賽結(jié)束時的比賽局?jǐn)?shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.答案:(1)在馬龍先前三局贏兩局的情況下,王皓取勝有兩種情況.第一種是王皓連勝三局;第二種是在第四到第六局,王皓贏了兩局,第七局王皓贏.在第一種情況下王皓取勝的概率為(12)3=18;在第二種情況下王皓取勝的概率為為C23(12)3×12=316,王皓獲勝的概率18+316=516;(3分)(2)比賽打滿七局有兩種結(jié)果:馬龍勝或王皓勝.記“比賽打滿七局,馬龍勝”為事件A,則P(A)=C13(12)3×12=316;記“比賽打滿七局,王皓勝”為事件B,則P(B)=C23(12)3×12=316;因為事件A、B互斥,所以比賽打滿七局的概率為P(A)+P(B)=38.(7分)(3)比賽結(jié)束時,比賽的局?jǐn)?shù)為5,6,7,則打完五局馬龍獲勝的概率為12×12=14;打完六局馬琳獲勝的概率為C12(12)2×12=14,王皓取勝的概率為(12)3=18;比賽打滿七局,馬龍獲勝的概率為C13(12)3×12=316,王皓取勝的概率為為C23(12)3×12=316;所以ξ的分布列為ξ567P(ξ)143838Eξ=5×14+6×38+7×38=498.(12分)13.已知函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過點P(12,12),則常數(shù)a的值為()A.2B.4C.12D.14答案:∵函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過點P(12,12),∴a12=12,?a=14.故選D.14.寫出下列命題非的形式:
(1)p:函數(shù)f(x)=ax2+bx+c的圖象與x軸有唯一交點;
(2)q:若x=3或x=4,則方程x2-7x+12=0.答案:(1)函數(shù)f(x)=ax2+bx+c的圖象與x軸沒有交點或至少有兩個交點.(2)若x=3或x=4,則x2-7x+12≠0.15.設(shè)a,b是不共線的兩個向量,已知=2+m,=+,=-2.若A,B,D三點共線,則m的值為()
A.1
B.2
C.-2
D.-1答案:D16.______稱為向量的長度(或稱為模),記作
______,______稱為零向量,記作
______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個單位的向量.17.如果輸入2,那么執(zhí)行圖中算法的結(jié)果是()A.輸出2B.輸出3C.輸出4D.程序出錯,輸不出任何結(jié)果答案:第一步:輸入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:輸出4故為C.18.若將方程|(x-4)2+y2-(x+4)2+y2|=6化簡為x2a2-y2b2=1的形式,則a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示點(x,y)到(4,0),(-4,0)兩點距離差的絕對值為6,∴軌跡為以(4,0),(-4,0)為焦點的雙曲線,方程為x29-y27=1∴a2-b2=2故為:219.O、A、B、C為空間四個點,又為空間的一個基底,則()
A.O、A、B、C四點共線
B.O、A、B、C四點共面,但不共線
C.O、A、B、C四點中任意三點不共線
D.O、A、B、C四點不共面答案:D20.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是()
A.內(nèi)切
B.相交
C.外切
D.外離答案:B21.已知a=log132,b=(13)12,c=(23)12,則a,b,c大小關(guān)系為______.答案:∵a=log132<log131=0,又∵函數(shù)y=x12在(0,+∞)是增函數(shù),∴(23)12>(13)12>0.所以,c>b>a.故為c>b>a.22.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當(dāng)1≤m≤2,0≤n≤2時,|ma+nb|的最大值為______.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當(dāng)m=2且n=2時,|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.23.下列幾種說法正確的個數(shù)是()
①相等的角在直觀圖中對應(yīng)的角仍然相等;
②相等的線段在直觀圖中對應(yīng)的線段仍然相等;
③平行的線段在直觀圖中對應(yīng)的線段仍然平行;
④線段的中點在直觀圖中仍然是線段的中點.
A.1
B.2
C.3
D.4答案:B24.若f(x)在定義域[a,b]上有定義,則在該區(qū)間上()A.一定連續(xù)B.一定不連續(xù)C.可能連續(xù)也可能不連續(xù)D.以上均不正確答案:f(x)有定義是f(x)在區(qū)間上連續(xù)的必要而不充分條件.有定義不一定連續(xù).還需加上極限存在才能推出連續(xù).故選C.25.下面四個結(jié)論:
①偶函數(shù)的圖象一定與y軸相交;
②奇函數(shù)的圖象一定通過原點;
③偶函數(shù)的圖象關(guān)于y軸對稱;
④既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R),
其中正確命題的個數(shù)是()A.1B.2C.3D.4答案:偶函數(shù)的圖象關(guān)于y軸對稱,但不一定與y軸相交,因此①錯誤,③正確;奇函數(shù)的圖象關(guān)于原點對稱,但不一定經(jīng)過原點,只有在原點處有定義才通過原點,因此②錯誤;若y=f(x)既是奇函數(shù),又是偶函數(shù),由定義可得f(x)=0,但不一定x∈R,只要定義域關(guān)于原點對稱即可,因此④錯誤.故選A.26.已知x、y之間的一組數(shù)據(jù)如下:
x0123y8264則線性回歸方程y=a+bx所表示的直線必經(jīng)過點()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴線性回歸方程y=a+bx所表示的直線必經(jīng)過點(1.5,5)故選C27.已知O是△ABC所在平面內(nèi)一點,D為BC邊中點,且,那么(
)
A.
B.
C.
D.2
答案:A28.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點,連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點共圓∴∠EFC=∠D=α∴∠DEB=α故為:α29.一元二次不等式ax2+bx+c≤0的解集是全體實數(shù)所滿足的條件是(
)
A.
B.
C.
D.答案:D30.已知△ABC中,過重心G的直線交邊AB于P,交邊AC于Q,設(shè)AP=pPB,AQ=qQC,則pqp+q=()A.1B.3C.13D.2答案:取特殊直線PQ使其過重心G且平行于邊BC∵點G為重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故選項為A31.(理科)若隨機(jī)變量ξ~N(2,22),則D(14ξ)的值為______.答案:解;∵隨機(jī)變量ξ服從正態(tài)分布ξ~N(2,22),∴可得隨機(jī)變量ξ方差是4,∴D(14ξ)的值為142D(ξ)=142×4=14.故為:14.32.已知兩點分別為A(4,3)和B(7,-1),則這兩點之間的距離為()A.1B.2C.3D.5答案:∵A(4,3)和B(7,-1),∴AB=(4-7)2+(3+1)2=5故選D.33.已知集合M={0,1},N={2x+1|x∈M},則M∩N=()A.{1}B.{0,1}C.{0,1,3}D.空集答案:∵M(jìn)={0,1},N={2x+1|x∈M},當(dāng)x=0時,2x+1=1;當(dāng)x=1時,2x+1=3,∴N={1,3}則M∩N={1}.故選A.34.若圓x2+y2=9上每個點的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來的,則所得到的曲線的方程是()
A.
B.
C.
D.答案:C35.利用計算機(jī)在區(qū)間(0,1)上產(chǎn)生兩個隨機(jī)數(shù)a和b,則方程有實根的概率為()
A.
B.
C.
D.1答案:A36.下列圖象中不能作為函數(shù)圖象的是()A.
B.
C.
D.
答案:根據(jù)函數(shù)的概念:如果在一個變化過程中,有兩個變量x、y,對于x的每一個值,y都有唯一確定的值與之對應(yīng),這時稱y是x的函數(shù).結(jié)合選項可知,只有選項B中是一個x對應(yīng)1或2個y故選B.37.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,則實數(shù)x+y的值______.答案:因為集合A={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故為:34.38.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進(jìn)行了5次試驗,根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸直線方程y=0.68x+54.6
表中有一個數(shù)據(jù)模糊不清,請你推斷出該數(shù)據(jù)的值為()A.68B.68.2C.69D.75答案:設(shè)表中有一個模糊看不清數(shù)據(jù)為m.由表中數(shù)據(jù)得:.x=30,.y=m+3075,由于由最小二乘法求得回歸方程y=0.68x+54.6.將x=30,y=m+3075代入回歸直線方程,得m=68.故選A.39.把矩陣變?yōu)楹螅c對應(yīng)的值是()
A.
B.
C.
D.答案:C40.已知A,B兩點的極坐標(biāo)為(6,)和(8,),則線段AB中點的直角坐標(biāo)為()
A.(,-)
B.(-,)
C.(,-)
D.(-,-)答案:D41.5顆骰子同時擲出,共擲100次則至少一次出現(xiàn)全為6點的概率為(
)A.B.C.D.答案:C解析:5顆骰子同時擲出,沒有全部出現(xiàn)6點的概率是,共擲100次至少一次出現(xiàn)全為6點的概率是.42.某年級共有210名同學(xué)參加數(shù)學(xué)期中考試,隨機(jī)抽取10名同學(xué)成績?nèi)缦拢?/p>
成績(分)506173859094人數(shù)221212則總體標(biāo)準(zhǔn)差的點估計值為______(結(jié)果精確到0.01).答案:由題意知本題需要先做出這組數(shù)據(jù)的平均數(shù)50×2+61×2+73+2×85+90+2×9410=74.9,這組數(shù)據(jù)的總體方差是(2×24.92+1.92+2×13.92+15.12+2×19.12)÷10=309.76,∴總體標(biāo)準(zhǔn)差是309.76≈17.60,故為:17.60.43.若A∩B=A∪B,則A______B.答案:設(shè)有集合W=A∪B=B∩C,根據(jù)并集的性質(zhì),W=A∪B?A?W,B?W,根據(jù)交集的性質(zhì),W=A∩B?W?A,W?B由集合子集的性質(zhì),A=B=W,故為:=.44.點P,設(shè)△ABC的面積是△PBC的面積的m倍,那么m=()
A.1
B.
C.4
D.2答案:B45.已知數(shù)列{an}前n項的和為Sn,且滿足an=n2
(n∈N*).
(Ⅰ)求s1、s2、s3的值;
(Ⅱ)用數(shù)學(xué)歸納法證明sn=n(n+1)(2n+1)6
(n∈N*).答案:(Ⅰ)∵an=n2,n∈N*∴s1=a1=1,s2=a1+a2=1+4=5,s3=a1+a2+a3=1+4+9=14.…(6分)(Ⅱ)證明:(1)當(dāng)n=1時,左邊=s1=1,右邊=1×(1+1)(2+1)6=1,所以等式成立.…(8分)(2)假設(shè)n=k(k∈N*)時結(jié)論成立,即Sk=k(k+1)(2k+1)6,…(10分)那么,Sk+1=Sk+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6即n=k+1時,等式也成立.…(13分)根據(jù)(1)(2)可知對任意的正整數(shù)n∈N*都成立.…(14分)46.直線x=2-12ty=-1+12t(t為參數(shù))被圓x2+y2=4截得的弦長為______.答案:∵直線x=2-12ty=-1+12t(t為參數(shù))∴直線的普通方程為x+y-1=0圓心到直線的距離為d=12=22,l=24-(22)2=14,故為:14.47.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點,建立適當(dāng)?shù)淖鴺?biāo)系,求平面AMN的法向量.答案:(-3,2,-4)為平面AMN的一個法向量.解析:以D為原點,DA、DC、DD1所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系.(如圖所示).設(shè)棱長為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設(shè)平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)為平面AMN的一個法向量.48.曲線(θ為參數(shù))上的點到原點的最大距離為()
A.1
B.
C.2
D.答案:C49.向面積為S的△ABC內(nèi)任投一點P,則△PBC的面積小于S2的概率為______.答案:記事件A={△PBC的面積小于S2},基本事件空間是三角形ABC的面積,(如圖)事件A的幾何度量為圖中陰影部分的面積(DE是三角形的中位線),因為陰影部分的面積是整個三角形面積的34,所以P(A)=陰影部分的面積三角形ABC的面積=34.故為:34.50.已知命題p:?x∈R,x2-x+1>0,則命題¬p
是______.答案:∵命題p:?x∈R,x2-x+1>0,∴命題p的否定是“?x∈R,x2-x+1≤0”故為:?x∈R,x2-x+1≤0.第2卷一.綜合題(共50題)1.根據(jù)如圖的框圖,寫出打印的第五個數(shù)是______.答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是:輸出N<35時,打印A值.程序在運行過程中各變量的情況如下表示:
是否繼續(xù)循環(huán)
A
N循環(huán)前
1
1
第一圈
2×1+1=3
2
是第二圈
2×3+1=7
3
是第三圈
2×7+1=15
4
是第四圈
2×15+1=31
5
是…所以這個打印的第五個數(shù)是31.故為:312.如圖程序輸出的結(jié)果是()
a=3,
b=4,
a=b,
b=a,
PRINTa,b
END
A.3,4
B.4,4
C.3,3
D.4,3答案:B3.設(shè)a=log
132,b=log123,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:c=(12)0.3>0,a=log
132<0,b=log123
<0并且log
132>log133,log
133>log123所以c>a>b故選D.4.曲線與坐標(biāo)軸的交點是(
)A.B.C.D.答案:B解析:當(dāng)時,,而,即,得與軸的交點為;當(dāng)時,,而,即,得與軸的交點為5.已知在△ABC中,A(2,-5,3),AB=(4,1,2),BC=(3,-2,5),則C點坐標(biāo)為
______.答案:設(shè)C(x,y,z),則:
AC=AB+BC即:(x-2,y+5,z-3)=(4,1,2)+(3,-2,5)=(7,-1,7)所以得:x-2=7y+5=-1z-3=7,即x=9y=-6z=10故為:(9,-6,10)6.已知a=(1,-2,1),a+b=(3,-6,3),則b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故選A.7.質(zhì)地均勻的正四面體玩具的4個面上分別刻著數(shù)字1,2,3,4,將4個這樣的玩具同時拋擲于桌面上.
(1)求與桌面接觸的4個面上的4個數(shù)的乘積不能被4整除的概率;
(2)設(shè)ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個數(shù)均為奇數(shù),概率為P1=(12)4=116②4個數(shù)中有3個奇數(shù),另一個為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),由題意知ξ的可能取值是0,1,2,3,4,根據(jù)符合二項分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項分布B(4,12),∴Eξ=4×12=2.8.設(shè)M是□ABCD的對角線的交點,O為任意一點(且不與M重合),則OA+OB+OC+OD
等于()A.OMB.2OMC.3OMD.4OM答案:∵O為任意一點,不妨把A點O看成O點,則OA+OB+OC+OD=0+AB+AC
+AD,∵M(jìn)是□ABCD的對角線的交點,∴0+AB+AC+AD=2AC=4AM故選D9.(本小題滿分10分)選修4-1:幾何證明選講
如圖,的角平分線的延長線交它的外接圓于點.
(Ⅰ)證明:;
(Ⅱ)若的面積,求的大小.答案:(Ⅰ)證明見解析(Ⅱ)90°解析:本題主要考查平面幾何中與圓有關(guān)的定理及性質(zhì)的應(yīng)用、三角形相似及性質(zhì)的應(yīng)用.證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.因為∠AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因為△ABE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.【點評】在圓的有關(guān)問題中經(jīng)常要用到弦切角定理、圓周角定理、相交弦定理等結(jié)論,解題時要注意根據(jù)已知條件進(jìn)行靈活的選擇,同時三角形相似是證明一些與比例有關(guān)問題的的最好的方法.10.①學(xué)校為了了解高一學(xué)生的情況,從每班抽2人進(jìn)行座談;②一次數(shù)學(xué)競賽中,某班有10人在110分以上,40人在90~100分,12人低于90分.現(xiàn)在從中抽取12人了解有關(guān)情況;③運動會服務(wù)人員為參加400m決賽的6名同學(xué)安排跑道.就這三件事,合適的抽樣方法為()A.分層抽樣,分層抽樣,簡單隨機(jī)抽樣B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機(jī)抽樣C.分層抽樣,簡單隨機(jī)抽樣,簡單隨機(jī)抽樣D.系統(tǒng)抽樣,分層抽樣,簡單隨機(jī)抽樣答案:①是從較多的一個總體中抽取樣本,且總體之間沒有差異,故用系統(tǒng)抽樣,②是從不同分?jǐn)?shù)的總體中抽取樣本,總體之間的差異比較大,故用分層抽樣,③是六名運動員選跑道,用簡單隨機(jī)抽樣,故選D.11.在空間坐標(biāo)中,點B是A(1,2,3)在yOz坐標(biāo)平面內(nèi)的射影,O為坐標(biāo)原點,則|OB|等于()
A.
B.
C.2
D.答案:B12.由圓C:x=2+cosθy=3+sinθ(θ為參數(shù))求圓的標(biāo)準(zhǔn)方程.答案:圓的參數(shù)方程x=2+cosθy=3+sinθ變形為:cosθ=2-xsinθ=3-y,根據(jù)同角的三角函數(shù)關(guān)系式cos2θ+sin2θ=1,可得到標(biāo)準(zhǔn)方程:(x-2)2+(y-3)2=1.所以為(x-2)2+(y-3)2=1.13.設(shè)a=(4,3),a在b上的投影為522,b在x軸上的投影為2,且|b|≤14,則b為()A.(2,14)B.(2,-27)C.(-2,27)D.(2,8)答案:∵b在x軸上的投影為2,∴設(shè)b=(2,y)∵a在b上的投影為522,∴8+3y4+y2=522∴7y2-96y-28=0,解可得y=-27或14,∵|b|≤14,即4+y2≤144,∴y=-27,b=(2,-27)故選B14.已知平面內(nèi)的向量a,b,c兩兩所成的角相等,且|a|=2,|b|=3,|c|=5,則|a+b+c|的值的集合為______.答案:設(shè)平面內(nèi)的向量a,b,c兩兩所成的角為α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,當(dāng)α=0°時,|a+b+c|2=100,|a+b+c|=10,當(dāng)α=120°時,|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合為{7,10}.故為:{7,10}.15.從四個公司按分層抽樣的方法抽取職工參加知識競賽,其中甲公司共有職工96人.若從甲、乙、丙、丁四個公司抽取的職工人數(shù)分別為12,21,25,43,則這四個公司的總?cè)藬?shù)為()
A.101
B.808
C.1212
D.2012答案:B16.設(shè),求證:。答案:證明略解析:證明:因為,所以有。又,故有?!?0分于是有得證。
…………20分17.如圖,已知AB是⊙O的直徑,AB⊥CD于E,切線BF交AD的延長線于F,若AB=10,CD=8,則切線BF的長是
______.答案:連接OD,AB⊥CD于E,根據(jù)垂徑定理得到DE=4,在直角△ODE中,根據(jù)勾股定理得到OE=3,因而AE=8,易證△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.18.過P(-1,1),Q(3,9)兩點的直線的斜率為(
)
A.2
B.
C.4
D.答案:A19.從1,2,…,9這九個數(shù)中,隨機(jī)抽取3個不同的數(shù),則這3個數(shù)的和為偶數(shù)的概率是()A.59B.49C.1121D.1021答案:基本事件總數(shù)為C93,設(shè)抽取3個數(shù),和為偶數(shù)為事件A,則A事件數(shù)包括兩類:抽取3個數(shù)全為偶數(shù),或抽取3數(shù)中2個奇數(shù)1個偶數(shù),前者C43,后者C41C52.∴A中基本事件數(shù)為C43+C41C52.∴符合要求的概率為C34+C14C25C39=1121.20.已知、分別是的外接圓和內(nèi)切圓;證明:過上的任意一點,都可作一個三角形,使得、分別是的外接圓和內(nèi)切圓.答案:略解析:證:如圖,設(shè),分別是的外接圓和內(nèi)切圓半徑,延長交于,則,,延長交于;則,即;過分別作的切線,在上,連,則平分,只要證,也與相切;設(shè),則是的中點,連,則,,,所以,由于在角的平分線上,因此點是的內(nèi)心,(這是由于,,而,所以,點是的內(nèi)心).即弦與相切.21.以過橢圓+=1(a>b>0)的右焦點的弦為直徑的圓與直線l:x=的位置關(guān)系是()
A.相交
B.相切
C.相離
D.不能確定答案:C22.(理)某單位有8名員工,其中有5名員工曾經(jīng)參加過一種或幾種技能培訓(xùn),另外3名員工沒有參加過任何技能培訓(xùn),現(xiàn)要從8名員工中任選3人參加一種新的技能培訓(xùn);
(I)求恰好選到1名曾經(jīng)參加過技能培訓(xùn)的員工的概率;
(Ⅱ)這次培訓(xùn)結(jié)束后,仍然沒有參加過任何技能培訓(xùn)的員工人數(shù)X是一個隨機(jī)變量,求X的分布列和數(shù)學(xué)期望.答案:(I)由題意知本題是一個等可能事件的概率,∵試驗發(fā)生包含的事件是從8人中選3個,共有C83=56種結(jié)果,滿足條件的事件是恰好選到1名曾經(jīng)參加過技能培訓(xùn)的員工,共有C51C32=15∴恰好選到1名已參加過其他技能培訓(xùn)的員工的概率P=1556(II)隨機(jī)變量X可能取的值是:0,1,2,3.P(X=0)=156P(X=1)=1556P(X=2)=1528P(X=3)=C35C38=528∴隨機(jī)變量X的分布列是X0123P15615561528528∴X的數(shù)學(xué)期望是1×1556+2×
1528+3×528=15823.棱長為1的正方體ABCD-A1B1C1D1的8個頂點都在球O的表面上,E,F(xiàn)分別是棱AA1,DD1的中點,則直線EF被球O截得的線段長為()
A.
B.1
C.1+
D.答案:D24.(選做題)在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知射線θ=與曲線(t為參數(shù))相較于A,B來兩點,則線段AB的中點的直角坐標(biāo)為(
)。答案:(2.5,2.5)25.管理人員從一池塘中撈出30條魚做上標(biāo)記,然后放回池塘,將帶標(biāo)記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標(biāo)記的魚有2條.根據(jù)以上收據(jù)可以估計該池塘有______條魚.答案:設(shè)該池塘中有x條魚,由題設(shè)條件建立方程:30x=250,解得x=750.故為:750.26.下列命題中正確的是()
A.若,則
B.若,則
.若,則
D.若,則答案:C27.若直線l與直線2x+5y-1=0垂直,則直線l的方向向量為______.答案:直線l與直線2x+5y-1=0垂直,所以直線l:5x-2y+k=0,所以直線l的方向向量為:(2,5).故為:(2,5)28.從裝有2個紅球和2個黒球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()
A.至少有一個黒球與都是紅球
B.至少有一個黒球與都是黒球
C.至少有一個黒球與至少有1個紅球
D.恰有1個黒球與恰有2個黒球答案:D29.在△ABC所在平面存在一點O使得OA+OB+OC=0,則面積S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+
OC=AO,設(shè)OB+OC=OD∴O是AD的中點,要求面積之比的兩個三角形是同底的三角形,∴面積之比等于三角形的高之比,∴比值是13,故為:13.30.若f(x)是定義在R上的函數(shù),滿足對任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,且f(2)=3,則f(8)=______.答案:由題意可知:對任意的x,y∈R,都有f(x+y)=f(x)f(y)成立,所以x=y=2,可知f(4)=f(2+2)=f(2)?f(2),所以f(4)=9;令x=y=4,可知f(8)=f(4+4)=f(4)?f(4)=92=81.故為:81.31.若a>0,b<0,直線y=ax+b的圖象可能是()
A.
B.
C.
D.
答案:C32.點P(x0,y0)在圓x2+y2=r2內(nèi),則直線x0x+y0y=r2和已知圓的公共點的個數(shù)為(
)
A.0
B.1
C.2
D.不能確定答案:A33.已知復(fù)數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù),則實數(shù)m=______.答案:當(dāng)m2-5m+6=0m2-3m≠0時,即m=2或m=3m≠0且m≠3?m=2時復(fù)數(shù)z為純虛數(shù).故為:2.34.若兩直線l1,l2的傾斜角分別為α1,α2,則下列四個命題中正確的是()
A.若α1<α2,則兩直線斜率k1<k2
B.若α1=α2,則兩直線斜率k1=k2
C.若兩直線斜率k1<k2,則α1<α2
D.若兩直線斜率k1=k2,則α1=α2答案:D35.設(shè)向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為
______.答案:|a|=1因為|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因為0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:236.設(shè)P1(4,-3),P2(-2,6),且P在P1P2的延長線上,使||=2||,則點P的坐標(biāo)
()
A.(-8,15)
B.(0,3)
C.(-,)
D.(1,)答案:A37.安排6名演員的演出順序時,要求演員甲不第一個出場,也不最后一個出場,則不同的安排方法種數(shù)是()
A.120
B.240
C.480
D.720答案:C38.將參數(shù)方程化為普通方程為(
)
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3)
D.y=x+2(0≤y≤1)答案:C39.化簡下列各式:
(1)AB+DF+CD+BC+FA=______;
(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故為:(1)0;(2)AC40.已知三點A(1,2),B(2,-1),C(2,2),E,F(xiàn)為線段BC的三等分點,則AE?AF=______.答案:∵A(1,2),B(2,-1),C(2,2),∴AB=(1,-3),BC=(0,3),AE=AB+13BC=(1,-2),AF=AB+23BC=(1,-1),∴AE?AF=1×1+(-2)×(-1)=3.故為:341.平面向量與的夾角為60°,=(2,0),||=1,則|+2|()
A.
B.2
C.4
D.12答案:B42.長為3的線段AB的端點A、B分別在x軸、y軸上移動,,則點C的軌跡是()
A.線段
B.圓
C.橢圓
D.雙曲線答案:C43.下列點在x軸上的是()
A.(0.1,0.2,0.3)
B.(0,0,0.001)
C.(5,0,0)
D.(0,0.01,0)答案:C44.{,,}是空間向量的一個基底,設(shè)=+,=+,=+,給出下列向量組:①{,,}②{,,},③{,,},④{,,},其中可以作為空間向量基底的向量組有()組.
A.1
B.2
C.3
D.4答案:C45.若雙曲線的漸近線方程為y=±34x,則雙曲線的離心率為______.答案:由題意可得,當(dāng)焦點在x軸上時,ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當(dāng)焦點在y軸上時,ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53
或54.46.為了了解1200名學(xué)生對學(xué)校某項教改試驗的意見,打算從中抽取一個容量為40的樣考慮用系統(tǒng)抽樣,則分段的間隔k為______答案:由題意知本題是一個系統(tǒng)抽樣,總體中個體數(shù)是1200,樣本容量是40,根據(jù)系統(tǒng)抽樣的步驟,得到分段的間隔K=120040=30,故為:30.47.給定兩個長度為1且互相垂直的平面向量OA和OB,點C在以O(shè)為圓心的圓弧AB上變動.若OC=2xOA+yOB,其中x,y∈R,則x+y的最大值是______.答案:由題意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ則x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故為:5248.“所有9的倍數(shù)(M)都是3的倍數(shù)(P),某奇數(shù)(S)是9的倍數(shù)(M),故此奇數(shù)(S)是3的倍數(shù)(P)”,上述推理是()
A.小前提錯
B.結(jié)論錯
C.正確的
D.大前提錯答案:C49.半徑為1、2、3的三個圓兩兩外切.證明:以這三個圓的圓心為頂點的三角形是直角三角形.
答案:證明:設(shè)⊙O1、⊙O2、⊙O3的半徑分別為1、2、3.因這三個圓兩兩外切,故有O1O2=1+2=3,O2O3=2+3=5,O1O3=1+3=4,則有O1O22+O1O32=32+42=52=O2O32根據(jù)勾股定理的逆定理,得到△O1O2O3為直角三角形.50.直線y=2x與直線x+y=3的交點坐標(biāo)是
______.答案:聯(lián)立兩直線方程得y=2xx+y=3,解得x=1y=2所以直線y=2x與直線x+y=3的交點坐標(biāo)是(1,2)故為(1,2).第3卷一.綜合題(共50題)1.在方程(θ為參數(shù)且θ∈R)表示的曲線上的一個點的坐標(biāo)是()
A.(,)
B.(,)
C.(2,-7)
D.(1,0)答案:B2.2007年10月24日18時05分,在西昌衛(wèi)星發(fā)射中心,“嫦娥一號”衛(wèi)星順利升空,24分鐘后,星箭成功分離,衛(wèi)星首次進(jìn)入以地心為焦點的橢圓形調(diào)相軌道,衛(wèi)星近地點為約200公里,遠(yuǎn)地點為約51000公里.設(shè)地球的半經(jīng)為R,則衛(wèi)星軌道的離心率為______(結(jié)果用R的式子表示)答案:由題意衛(wèi)星進(jìn)入以地心為焦點的橢圓形調(diào)相軌道,衛(wèi)星近地點為約200公里,遠(yuǎn)地點為約51000公里.設(shè)地球的半經(jīng)為R,易知,a=25600+R,c=25400,則衛(wèi)星軌道的離心率e=2540025600+R.故為:2540025600+R.3.將正方形ABCD沿對角線BD折起,使平面ABD⊥平面CBD,E是CD中點,則∠AED的大小為()
A.45°
B.30°
C.60°
D.90°答案:D4.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數(shù)單位),求復(fù)數(shù)z2+i的虛部.
(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數(shù)單位),且z1z2為純虛數(shù),求實數(shù)a的值.答案:(Ⅰ)設(shè)z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復(fù)數(shù)z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數(shù)則3a-8=0,且4a+6≠0,解得a=835.在某項體育比賽中,七位裁判為一選手打出的分?jǐn)?shù)如下:
90
89
90
95
93
94
93
去掉一個最高分和一個最低分后,所剩數(shù)的平均值和方差分別為()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B6.設(shè)集合A={1,2,4},B={2,6},則A∪B等于()A.{2}B.{1,2,4,6}C.{1,2,4}D.{2,6}答案:∵集合A={1,2,4},B={2,6},∴A∪B={1,2,4}∪{2,6}={1,2,4,6},故選B.7.已知斜二測畫法得到的直觀圖△A′B′C′是正三角形,畫出原三角形的圖形.答案:由斜二測法知:B′C′不變,即BC與B′C′重合,O′A′由傾斜45°變?yōu)榕cx軸垂直,并且O′A′的長度變?yōu)樵瓉淼?倍,得到OA,由此得到原三角形的圖形ABC.8.(參數(shù)方程與極坐標(biāo)選講)在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2+2ρcosθ=0,點P的極坐標(biāo)為(2,π2),過點P作圓C的切線,則兩條切線夾角的正切值是______.答案:圓C的極坐標(biāo)方程ρ2+2ρcosθ=0,化為普通方程為x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)為圓心,以1為半徑的圓.點P的極坐標(biāo)為(2,π2),化為直角坐標(biāo)為(0,2).設(shè)兩條切線夾角為2θ,則sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故為43.9.設(shè)m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題中正確的是()
A.若m∥n,m∥α,則n∥α
B.若α⊥β,m∥α,則m⊥β
C.若α⊥β,m⊥β,則m∥α
D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D10.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=a2+b22.運用類比方法,若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,則其外接球的半徑R=______.答案:直角三角形外接圓半徑為斜邊長的一半,由類比推理可知若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,將三棱錐補成一個長方體,其外接球的半徑R為長方體對角線長的一半.故為a2+b2+c22故為:a2+b2+c2211.已知向量a=(1,2),b=(2,-3).若向量c滿足(c+a)∥b,c⊥(a+b),則c=______.答案:設(shè)c=(x,y),則c+a=(x+1,y+2),又(c+a)∥b,∴2(y+2)+3(x+1)=0.
①又c⊥(a+b),∴(x,y)?(3,-1)=3x-y=0.
②解①②得x=-79,y=-73.故應(yīng)填:(-79,-73).12.從5名男學(xué)生、3名女學(xué)生中選3人參加某項知識對抗賽,要求這3人中既有男生又有女生,則不同的選法共有()A.45種B.56種C.90種D.120種答案:由題意知本題是一個分類計數(shù)問題,要求這3人中既有男生又有女生包括兩種情況,一是兩女一男,二是兩男一女,當(dāng)包括兩女一男時,有C32C51=15種結(jié)果,當(dāng)包括兩男一女時,有C31C52=30種結(jié)果,∴根據(jù)分類加法得到共有15+30=45故選A.13.在平面直角坐標(biāo)系中,點A(4,-2)按向量a=(-1,3)平移,得點A′的坐標(biāo)是()A.(5,-5)B.(3,1)C.(5,1)D.(3,-5)答案:設(shè)A′的坐標(biāo)為(x′,y′),則x′=4-1=3y′=-2+3=1,∴A′(3,1).故選B.14.老師在班級50名學(xué)生中,依次抽取學(xué)號為5,10,15,20,25,30,35,40,45,50的學(xué)和進(jìn)行作業(yè)檢查,這種抽樣方法是()
A.隨機(jī)抽樣
B.分層抽樣
C.系統(tǒng)抽樣
D.以上都是答案:C15.求證:若圓內(nèi)接五邊形的每個角都相等,則它為正五邊形.答案:證明:設(shè)圓內(nèi)接五邊形為ABCDE,圓心是O.連接OA,OB,OCOD,OE,可得五個三角形∵OA=OB=OC=OD=OE=半徑,∴有五個等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中則∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因為所有內(nèi)角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理證明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB則△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA
(SAS邊角邊定律)∴AB=BC=CD=DE=EA∴五邊形ABCDE為正五邊形16.正方形ABCD的邊長為1,=,=,則|+|=(
)
A.0
B.2
C.
D.2答案:C17.如圖,正方體ABCD-A1B1C1D1的棱長為3,點M在AB上,且AM=13AB,點P在平面ABCD上,且動點P到直線A1D1的距離與P到點M的距離相等,在平面直角坐標(biāo)系xAy中,動點P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標(biāo)系,設(shè)P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.18.△ABC中,∠A外角的平分線與此三角形外接圓相交于P,求證:BP=CP.
答案:證明:∠CBP=∠CAP=∠PAD又∠1=∠2由∠CAD=∠ACB+∠CBA=∠ACB+∠CBP+∠2=∠ACB+∠1+∠CBP=∠BCP+∠CBP∴∠BCP=∠CBP,∴BP=CP.19.已知向量a=(3,4),b=(8,6),c=(2,k),其中k為常數(shù),如果<a,c>=<b,c>,則k=______.答案:由題意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k
2=16+6k104+k
2.解得k=2,故為2.20.選做題:如圖,點A、B、C是圓O上的點,且AB=4,∠ACB=30°,則圓O的面積等于______.答案:連接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一個等邊三角形,∴OA=AB=4,∴⊙O的面積是16π故為16π21.如圖是將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù)的一個程序框圖,判斷框內(nèi)應(yīng)填入的條件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù),11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框圖對累加變量S和循環(huán)變量i的賦值S=1,i=1,i不滿足判斷框中的條件,執(zhí)行S=1+2×S=1+2×1=3,i=1+1=2,i不滿足條件,執(zhí)行S=1+2×3=7,i=2+1=3,i不滿足條件,執(zhí)行S=1+2×7=15,i=3+1=4,i仍不滿足條件,執(zhí)行S=1+2×15=31,此時31是要輸出的S值,說明i不滿足判斷框中的條件,由此可知,判斷框中的條件應(yīng)為i>4.故選D.22.設(shè)雙曲線的漸近線方程為2x±3y=0,則雙曲線的離心率為______.答案:∵雙曲線的漸近線方程是2x±3y=0,∴知焦點是在x軸時,ba=23,設(shè)a=3k,b=2k,則c=13k,∴e=133.焦點在y軸時ba=32,設(shè)a=2k,b=3k,則c=13k,∴e=132.故為:133或13223.(坐標(biāo)系與參數(shù)方程選做題)點P(-3,0)到曲線x=t2y=2t(其中參數(shù)t∈R)上的點的最短距離為______.答案:設(shè)點Q(t2,2t)為曲線上的任意一點,則|PQ|=(t2+3)2+(2t)2=(t2+5)2-16≥52-16=3,當(dāng)且僅當(dāng)t=0取等號,此時Q(0,0).故點P(-3,0)到曲線x=t2y=2t(其中參數(shù)t∈R)上的點的最短距離為3.故為3.24.若則實數(shù)λ的值是()
A.
B.
C.
D.答案:D25.已知平面向量=(3,1),=(x,3),且⊥,則實數(shù)x的值為()
A.9
B.1
C.-1
D.-9答案:C26.拋物線y=3x2的焦點坐標(biāo)是______.答案:化為標(biāo)準(zhǔn)方程為x2=13y,∴2p=13,∴p2=
112,∴焦點坐標(biāo)是(0,112).故為(0,112)27.在平行四邊形ABCD中,AC與DB交于點O,E是線段OD的中點,AE延長線與CD交于F.若AC=a,BD=b,則AF=()A.14a+12bB.23a+13bC.12a+14bD.13a+23b答案:∵由題意可得△DEF∽△BEA,∴DEEB=DFAB=13,再由AB=CD可得DFDC=13,∴DFFC=12.作FG平行BD交AC于點G,∴FGDO=CGCO=23,∴GF=23OD=13BD=13b.∵AG=AO+OG=AO+13OC=12AC+16AC=23AC=23a,∴AF=AG+GF=23a+13b,故選B.28.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.
(1)畫出執(zhí)行該問題的程序框圖;
(2)以下是解決該問題的一個程序,但有2處錯誤,請找出錯誤并予以更正.答案:(12分)(1)程序框圖如圖:(兩者選其一即可,不唯一)(2)①直到型循環(huán)結(jié)構(gòu)是直到滿足條件退出循環(huán),While錯誤,應(yīng)改成LOOP
UNTIL;②根據(jù)循環(huán)次數(shù)可知輸出n+1
應(yīng)改為輸出n;29.已知曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)上一點P,原點為0,直線P0的傾斜角為π4,則P點的坐標(biāo)是______.答案:根據(jù)題意,曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)消去參數(shù)化成普通方程,得x29+y216=1(y≥0)∵直線P0的傾斜角為π4,∴P點在直線y=x上,將其代入橢圓方程得x29+x216=1,解之得x=y=125(舍負(fù)),因此點P的坐標(biāo)為(125,125)故為:(125,125)30.直線(t為參數(shù))的傾斜角是()
A.20°
B.70°
C.45°
D.135°答案:D31.已知圓C:x2+y2-4x-5=0.
(1)過點(5,1)作圓C的切線,求切線的方程;
(2)若圓C的弦AB的中點P(3,1),求AB所在直線方程.答案:由C:x2+y2-4x-5=0得圓的標(biāo)準(zhǔn)方程為(x-2)2+y2=9-----------(2分)(1)顯然x=5為圓的切線.------------------------(4分)另一方面,設(shè)過(5,1)的圓的切線方程為y-1=k(x-5),即kx-y+1-5k=0;所以d=|2k-5k+1|k2+1=3,解得k=-43于是切線方程為4x+3y-23=0和x=5.------------------------(7分)(2)設(shè)所求直線與圓交于A,B兩點,其坐標(biāo)分別為(x1,y1)B(x2,y2)則有(x1-2)2+y21=9(x2-2)2+y22=9兩式作差得(x1+x2-4)(x2-x1)+(y2+y1)(y2-y1)=0--------------(10分)因為圓C的弦AB的中點P(3,1),所以(x2+x1)=6,(y2+y1)=2
所以y2-y1x2-x1=-1,故所求直線方程為
x+y-4=0-----------------(14分)32.已知△ABC的頂點坐標(biāo)分別為A(2,3),B(-1,0),C(2,0),則△ABC的周長是()
A.2
B.6+
C.3+2
D.6+3答案:D33.極點到直線ρ(cosθ+sinθ)=3的距離是
______.答案:將原極坐標(biāo)方程ρ(cosθ+sinθ)=3化為:直角坐標(biāo)方程為:x+y=3,原點到該直線的距離是:d=|3|2=62.∴所求的距離是:62.故填:62.34.小李在一旅游景區(qū)附近租下一個小店面賣紀(jì)念品和T恤,由于經(jīng)營條件限制,他最多進(jìn)50件T恤和30件紀(jì)念品,他至少需要T恤和紀(jì)念品40件才能維持經(jīng)營,已知進(jìn)貨價為T恤每件36元,紀(jì)念品每件50元,現(xiàn)在他有2400元可進(jìn)貨,假設(shè)每件T恤的利潤是18元,每件紀(jì)念品的利潤是20元,問怎樣進(jìn)貨才能使他的利潤最大,最大利潤為多少?答案:設(shè)進(jìn)T恤x件,紀(jì)念品y件,可得利潤為z元,由題意得x、y滿足的約束條件為:
0≤x≤50
0≤y≤30
x+y≥4036x+48y≤2400,且x、y∈N*目標(biāo)函數(shù)z=18x+20y約束條件的可行域如圖所示:五邊形ABCDE的各個頂點坐標(biāo)分別為:A(40,0),B(50,0),C(50,252),D(803,30),E(10,30),當(dāng)直線l:z=18x+20y經(jīng)過C(50,252)時取最大值,∵x,y必為整數(shù),∴當(dāng)x=50,y=12時,z取最大值即進(jìn)50件T恤,12件紀(jì)念品時,可獲最大利潤,最大利潤為1140元.35.函數(shù)y=f(x)對任意實數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy.
(1)求f(0)的值;
(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表達(dá)式并用數(shù)學(xué)歸納法證明你的結(jié)論;
(3)若f(1)≥1,求證:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用數(shù)學(xué)歸納法證明之.①當(dāng)n=1時猜想成立.②假設(shè)n=k時猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.這就是說n=k+1時猜想也成立.對于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,則f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假設(shè)n=k(k∈N*)時命題成立,即f(12k)≥122k>0,則f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,則f(12n)>0(n∈N*).36.如圖所示,在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設(shè)AB=a,∠ABC=θ
(1)求△ABC的面積f(θ)與正方形面積g(θ);
(2)當(dāng)θ變化時,求f(θ)g(θ)的最小值.答案:(1)由題得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)
設(shè)正方形的邊長為x,則BG=xsinθ,由幾何關(guān)系知:∠AGD=θ∴AG=xcosθ
由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4
令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函數(shù)y=1+14(t+t4)在(0,1]遞減∴ymin=94(當(dāng)且僅當(dāng)t=1即θ=π4時成立)∴當(dāng)θ=π4時,f(θ)g(θ)的最小值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 路面鋼板租賃合同范例
- 銷售導(dǎo)購合同范例
- 二年級數(shù)學(xué)計算題專項練習(xí)1000題匯編
- 四年級數(shù)學(xué)(小數(shù)加減運算)計算題專項練習(xí)與答案匯編
- 2024至2030年平面支承滑道項目投資價值分析報告
- 林業(yè)幼林撫育合同范例
- 陜西旅游烹飪職業(yè)學(xué)院《證券量化投資實訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 陜西科技大學(xué)《智能終端軟件開發(fā)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年甲乙雙方關(guān)于城市供水管道建設(shè)的供用水合同
- 2024年民間借貸合同范本
- GB/T 18266.3-2017體育場所等級的劃分第3部分:游泳場館星級劃分及評定
- 六年級上冊數(shù)學(xué)同步練習(xí)-1. 分?jǐn)?shù)與整數(shù)相乘《分?jǐn)?shù)乘整數(shù)的實際問題》蘇教版(含答案)1
- GB 5009.226-2016食品安全國家標(biāo)準(zhǔn)食品中過氧化氫殘留量的測定
- 反有組織犯罪法學(xué)習(xí)PPT
- 懸梁刺股-圖文
- 公司組織結(jié)構(gòu)圖Word模板
- CYYF城鎮(zhèn)污水廠全過程除臭工藝課件
- 課件:第三章 社會工作項目的策劃(《社會工作項目策劃與評估》課程)
- 國產(chǎn)保健食品靈芝孢子粉膠囊工藝(GMP使用)
- 新歷史小說1課件
- 2023年大連國際機(jī)場股份有限公司招聘筆試題庫及答案解析
評論
0/150
提交評論