版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年湖北城市建設(shè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知平面向量a,b,c滿足a+b+c=0,且a與b的夾角為135°,c與b的夾角為120°,|c|=2,則|a|=______.答案:∵a+b+c=0∴三個(gè)向量首尾相接后,構(gòu)成一個(gè)三角形且a與b的夾角為135°,c與b的夾角為120°,|c|=2,故所得三角形如下圖示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故為:62.參數(shù)方程x=2cosαy=3sinα(a為參數(shù))化成普通方程為______.答案:∵x=2cosαy=3sinα,∴cosα=x2sinα=y3∴(x2)2+(y3)2=cos2α+sin2α=1.即:參數(shù)方程x=2cosαy=3sinα化成普通方程為:x24+y29=1.故為:x24+y29=1.3.正方體的內(nèi)切球和外接球的半徑之比為
A.:1
B.:2
C.2:
D.:3答案:D4.下列各式中錯(cuò)誤的是()
A.||2=2
B.||=||
C.0?=0
D.m(n)=mn(m,n∈R)答案:C5.已知a=(1,0),b=(m,m)(m>0),則<a,b>=______.答案:∵b=(m,m)(m>0),∴b與第一象限的角平分線同向,且由原點(diǎn)指向遠(yuǎn)處,而a=(1,0)同橫軸的正方向同向,∴<a,b>=45°,故為:45°6.已知=1-ni,其中m,n是實(shí)數(shù),i是虛數(shù)單位,則m+ni=(
)
A.1+2i
B.1-2i
C.2+i
D.2-i答案:C7.下列函數(shù)中,既是偶函數(shù),又在(0,1)上單調(diào)遞增的函數(shù)是()A.y=|log3x|B.y=x3C.y=e|x|D.y=cos|x|答案:對于A選項(xiàng),函數(shù)定義域是(0,+∞),故是非奇非偶函數(shù),不合題意,A選項(xiàng)不正確;對于B選項(xiàng),函數(shù)y=x3是一個(gè)奇函數(shù),故不是正確選項(xiàng);對于C選項(xiàng),函數(shù)的定義域是R,是偶函數(shù),且當(dāng)x∈(0,+∞)時(shí),函數(shù)是增函數(shù),故在(0,1)上單調(diào)遞增,符合題意,故C選項(xiàng)正確;對于D選項(xiàng),函數(shù)y=cos|x|是偶函數(shù),在(0,1)上單調(diào)遞減,不合題意綜上知,C選項(xiàng)是正確選項(xiàng)故選C8.如圖,在扇形OAB中,∠AOB=60°,C為弧AB上且與A,B不重合的一個(gè)動點(diǎn),OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,則λ的取值范圍為()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:設(shè)射線OB上存在為B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,設(shè)OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三點(diǎn)共線可知x'+λy'=1,所以u=x+2y=tx'+t?2y'=t,則u=|OC||OC′|存在最大值,即在弧AB(不包括端點(diǎn))上存在與AB'平行的切線,所以λ∈(12,2).故選C.9.若圖中的直線l1,l2,l3的斜率分別為k1,k2,k3,則()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:D10.直線l1:x+3=0與直線l2:x+3y-1=0的夾角的大小為______.答案:由于直線l1:x+3=0的斜率不存在,故它的傾斜角為90°,直線l2:x+3y-1=0的斜率為-33,故它的傾斜角為150>,故這兩條直線的夾角為60°,故為60°.11.把下列命題寫成“若p,則q”的形式,并指出條件與結(jié)論.
(1)相似三角形的對應(yīng)角相等;
(2)當(dāng)a>1時(shí),函數(shù)y=ax是增函數(shù).答案:(1)若兩個(gè)三角形相似,則它們的對應(yīng)角相等.條件p:三角形相似,結(jié)論q:對應(yīng)角相等.(2)若a>1,則函數(shù)y=ax是增函數(shù).條件p:a>1,結(jié)論q:函數(shù)y=ax是增函數(shù).12.命題“存在實(shí)數(shù)x,,使x>1”的否定是()
A.對任意實(shí)數(shù)x,都有x>1
B.不存在實(shí)數(shù)x,使x≤1
C.對任意實(shí)數(shù)x,都有x≤1
D.存在實(shí)數(shù)x,使x≤1答案:C13.已知平面上的向量PA、PB滿足|PA|2+|PB|2=4,|AB|=2,設(shè)向量PC=2PA+PB,則|PC|的最小值是
______.答案:|PA|2+|PB|2=4,|AB|=2∴|PA|2+|PB|2=|AB|2∴PA?PB=0∴PC2=4PA2+4PA?PB+PB2=3PA2+4≥4∴|PC|≥2故為2.14.設(shè)U={(x,y)|x2+y2≤1,x,y∈R},M={(x,y)|x|+|y|≤1,x,y∈R},現(xiàn)有一質(zhì)點(diǎn)隨機(jī)落入?yún)^(qū)域U中,則質(zhì)點(diǎn)落入M中的概率是()A.2πB.12πC.1πD.2π答案:滿足條件U={(x,y)|x2+y2≤1,x,y∈R}的圓,如下圖示:其中滿足條件M={(x,y)|x|+|y|≤1,x,y∈R}的平面區(qū)域如圖中陰影所示:則圓的面積S圓=π陰影部分的面積S陰影=2故質(zhì)點(diǎn)落入M中的概率概率P=S陰影S正方形=2π故選D15.正多面體只有______種,分別為______.答案:正多面體只有5種,分別為正四面體、正六面體、正八面體、正十二面體、正二十面體.故為:5,正四面體、正六面體、正八面體、正十二面體、正二十面體.16.如圖的曲線是指數(shù)函數(shù)y=ax的圖象,已知a的值取,,,則相應(yīng)于曲線①②③④的a的值依次為()
A.,,,
B.,,,
C.,,,
D.,,,
答案:A17.點(diǎn)P,設(shè)△ABC的面積是△PBC的面積的m倍,那么m=()
A.1
B.
C.4
D.2答案:B18.已知點(diǎn)P是拋物線y2=2x上的動點(diǎn),點(diǎn)P在y軸上的射影是M,點(diǎn)A(72,4),則|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依題意可知焦點(diǎn)F(12,0),準(zhǔn)線x=-12,延長PM交準(zhǔn)線于H點(diǎn).則|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我們只有求出|PF|+|PA|最小值即可.由三角形兩邊長大于第三邊可知,|PF|+|PA|≥|FA|,①設(shè)直線FA與拋物線交于P0點(diǎn),可計(jì)算得P0(3,94),另一交點(diǎn)(-13,118)舍去.當(dāng)P重合于P0時(shí),|PF|+|PA|可取得最小值,可得|FA|=194.則所求為|PM|+|PA|=194-14=92.故選B.19.若=(2,-3,1)是平面α的一個(gè)法向量,則下列向量中能作為平面α的法向量的是()
A.(0,-3,1)
B.(2,0,1)
C.(-2,-3,1)
D.(-2,3,-1)答案:D20.用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個(gè)能被2整除”,那么反設(shè)的內(nèi)容是______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的步驟,應(yīng)先假設(shè)要證命題的否定成立,而要證命題的否定為:“a,b都不能被2整除”,故為:a、b都不能被2整除.21.在區(qū)間[-1,1]上任取兩個(gè)數(shù)s和t,則關(guān)于x的方程x2+sx+t=0的兩根都是正數(shù)的概率是[
]A.
B.
C.
D.答案:A22.已知f(x)是定義域?yàn)檎麛?shù)集的函數(shù),對于定義域內(nèi)任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立,下列命題成立的是()A.若f(3)≥9成立,則對于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,則對于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,則對于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,則對于任意的k≥4,均有f(k)≥k2成立答案:對A,當(dāng)k=1或2時(shí),不一定有f(k)≥k2成立;對B,應(yīng)有f(k)≥k2成立;對C,只能得出:對于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;對D,∵f(4)=25≥16,∴對于任意的k≥4,均有f(k)≥k2成立.故選D23.設(shè)圓O1和圓O2是兩個(gè)定圓,動圓P與這兩個(gè)定圓都相切,則圓P的圓心軌跡不可能是()
A.
B.
C.
D.
答案:A24.若直線l的方向向量為a,平面α的法向量為n,能使l∥α的是()A.a(chǎn)=(1,0,0),n=(-2,0,0)B.a(chǎn)=(1,3,5),n=(1,0,1)C.a(chǎn)=(0,2,1),n=(-1,0,-1)D.a(chǎn)=(1,-1,3),n=(0,3,1)答案:若l∥α,則a?n=0.而A中a?n=-2,B中a?n=1+5=6,C中a?n=-1,只有D選項(xiàng)中a?n=-3+3=0.故選D.25.設(shè)兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(diǎn)(4,1),則兩圓心的距離|C1C2|=______.答案:∵兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(diǎn)(4,1),故兩圓圓心在第一象限的角平分線上,設(shè)圓心的坐標(biāo)為(a,a),則有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圓心為(5+22,5+22
)
和(5-22,5-22
),故兩圓心的距離|C1C2|=2[(5+22)-(5-22)]=8,故為:826.求過點(diǎn)A(2,3)且被兩直線3x+4y-7=0,3x+4y+8=0截得線段為32的直線方程.答案:設(shè)所求直線l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線的夾角為45°,∴|
k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.27.直線y=3x的傾斜角為______.答案:∵直線y=3x的斜率是3,∴直線的傾斜角的正切值是3,∵α∈[0°,180°],∴α=60°,故為:60°28.已知圖所示的矩形,其長為12,寬為5.在矩形內(nèi)隨同地措施1000顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為550顆.則可以估計(jì)出陰影部分的面積約為______.答案:∵矩形的長為12,寬為5,則S矩形=60∴S陰S矩=S陰60=5501000,∴S陰=33,故:33.29.在△ABC中,=,=,且=2,則等于()
A.+
B.+
C.+
D.+答案:A30.已知兩點(diǎn)A(2,1),B(3,3),則直線AB的斜率為()
A.2
B.
C.
D.-2答案:A31.已知函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集為R.則實(shí)數(shù)K的取值范圍為______.答案:因?yàn)楹瘮?shù)f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的幾何意義是數(shù)軸上的點(diǎn)到-2與到3距離的差再減去3,它的最大值為2,不等式f(x)-g(x)≤K的解集為R.所以K≥2.故為:[2,+∞).32.已知=(1,2),=(-3,2),k+與-3垂直時(shí),k的值為(
)
A.17
B.18
C.19
D.20答案:C33.已知a=20.5,,,則a,b,c的大小關(guān)系是()
A.a(chǎn)>c>b
B.a(chǎn)>b>c
C.c>b>a
D.c>a>b答案:B34.某廠2011年的產(chǎn)值為a萬元,預(yù)計(jì)產(chǎn)值每年以7%的速度增加,則該廠到2022年的產(chǎn)值為______萬元.答案:2011年產(chǎn)值為a,增長率為7%,2012年產(chǎn)值為a+a×7%=a(1+7%),2013年產(chǎn)值為a(1+7%)+a(1+7%)×7%=a(1+7%)2,…,2022年的產(chǎn)值為a(1+7%)11.故為:a(1+7%)11.35.設(shè)z是復(fù)數(shù),a(z)表示zn=1的最小正整數(shù)n,則對虛數(shù)單位i,a(i)=()A.8B.6C.4D.2答案:a(i)=in=1,則最小正整數(shù)n為4.故選C.36.已知點(diǎn)M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點(diǎn)M的坐標(biāo)是
______.答案:∵點(diǎn)M在z軸上,∴設(shè)點(diǎn)M的坐標(biāo)為(0,0,z)又|MA|=|MB|,由空間兩點(diǎn)間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點(diǎn)M的坐標(biāo)是(0,0,-3).故為:(0,0,-3).37.(坐標(biāo)系與參數(shù)方程選做題)在平面直角坐標(biāo)系xOy中,曲線C1與C2的參數(shù)方程分別為x=ty=t(t為參數(shù))和x=2cosθy=2sinθ(θ為參數(shù)),則曲線C1與C2的交點(diǎn)坐標(biāo)為______.答案:在平面直角坐標(biāo)系xOy中,曲線C1與C2的普通方程分別為y2=x,x2+y2=2.解方程組y2=xx2
+y2=2
可得x=1y=1,故曲線C1與C2的交點(diǎn)坐標(biāo)為(1,1),故為(1,1).38.如圖,已知雙曲線以長方形ABCD的頂點(diǎn)A,B為左、右焦點(diǎn),且過C,D兩頂點(diǎn).若AB=4,BC=3,則此雙曲線的標(biāo)準(zhǔn)方程為______.答案:由題意可得點(diǎn)OA=OB=2,AC=5設(shè)雙曲線的標(biāo)準(zhǔn)方程是x2a2-y2b2=1.則2a=AC-BC=5-3=2,所以a=1.所以b2=c2-a2=4-1=3.所以雙曲線的標(biāo)準(zhǔn)方程是x2-y23=1.故為:x2-y23=139.已知球的表面積等于16π,圓臺上、下底面圓周都在球面上,且下底面過球心,圓臺的軸截面的底角為π3,則圓臺的軸截面的面積是()A.9πB.332C.33D.6答案:設(shè)球的半徑為R,由題意4πR2=16,R=2,圓臺的軸截面的底角為π3,可得圓臺母線長為2,上底面半徑為1,圓臺的高為3,所以圓臺的軸截面的面積S=12(2+4)×3=33故選C40.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點(diǎn),
cos〈,〉=.
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點(diǎn)E的坐標(biāo);
(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.答案:(1)點(diǎn)E的坐標(biāo)是(1,1,1)(2)F是AD的中點(diǎn)時(shí)滿足EF⊥平面PCB解析:(1)如圖所示,以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0)、B(2,2,0)、C(0,2,0),設(shè)P(0,0,2m),則E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴點(diǎn)E的坐標(biāo)是(1,1,1).(2)∵F∈平面PAD,∴可設(shè)F(x,0,z).則=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F點(diǎn)的坐標(biāo)為(1,0,0)即點(diǎn)F是AD的中點(diǎn)時(shí)滿足EF⊥平面PCB.41.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若向量OB=a100OA+a101OC,且A、B、C三點(diǎn)共線(該直線不過點(diǎn)O),則S200等于______.答案:由題意可知:向量OB=a100OA+a101OC,又∵A、B、C三點(diǎn)共線,則a100+a101=1,等差數(shù)列前n項(xiàng)的和為Sn=(a1+an)?n
2,∴S200=(a1+a200)×200
2=(a100+
a101)×2002=100,故為100.42.雙曲線的中心是原點(diǎn)O,它的虛軸長為26,右焦點(diǎn)為F(c,0)(c>0),直線l:x=a2c與x軸交于點(diǎn)A,且|OF|=3|OA|.過點(diǎn)F的直線與雙曲線交于P、Q兩點(diǎn).
(Ⅰ)求雙曲線的方程;
(Ⅱ)若AP?AQ=0,求直線PQ的方程.答案:解.(Ⅰ)由題意,設(shè)曲線的方程為x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以雙曲線的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(xiàn)(3,0),當(dāng)直線PQ與x軸垂直時(shí),PQ方程為x=3.此時(shí),AP?AQ≠0,應(yīng)舍去.當(dāng)直線PQ與x軸不垂直時(shí),設(shè)直線PQ的方程為y=k(x-3).由方程組x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于過點(diǎn)F的直線與雙曲線交于P、Q兩點(diǎn),則k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)設(shè)P(x1,y1),Q(x2,y2),則x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直線PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP?AQ=0,∴(x1-1,y1)?(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22滿足(*)∴直線PQ的方程為x-2y-3=0或x+2y-3=043.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個(gè)大于1.答案:證明:用反證法,假設(shè)x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個(gè)大于1,即原命題得證.44.某處有供水龍頭5個(gè),調(diào)查表明每個(gè)水龍頭被打開的可能性為,隨機(jī)變量ξ表示同時(shí)被打開的水龍頭的個(gè)數(shù),則P(ξ=3)為A.0.0081B.0.0729C.0.0525D.0.0092答案:A解析:本題考查n次獨(dú)立重復(fù)試驗(yàn)中,恰好發(fā)生k次的概率.對5個(gè)水龍頭的處理可視為做5次試驗(yàn),每次試驗(yàn)有2種可能結(jié)果:打開或未打開,相應(yīng)的概率為0.1或1-0.1="0.9."根據(jù)題意ξ~B(5,0.1),從而P(ξ=3)=(0.1)3(0.9)2=0.0081.45.下表為廣州亞運(yùn)會官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票價(jià)格,某球迷賽前準(zhǔn)備1200元,預(yù)訂15張下表中球類比賽的門票。比賽項(xiàng)目票價(jià)(元/場)足球
籃球
乒乓球100
80
60若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,該球迷想預(yù)訂上表中三種球類比賽門票,其中籃球比賽門票數(shù)與乒乓球比賽門票數(shù)相同,且籃球比賽門票的費(fèi)用不超過足球比賽門票的費(fèi)用,求可以預(yù)訂的足球比賽門票數(shù)。答案:解:設(shè)預(yù)訂籃球比賽門票數(shù)與乒乓球比賽門票數(shù)都是n(n∈N*)張,則足球比賽門票預(yù)訂(15-2n)張,由題意得解得由n∈N*,可得n=5,∴15-2n=5∴可以預(yù)訂足球比賽門票5張。46.(1+2x)6的展開式中x4的系數(shù)是______.答案:展開式的通項(xiàng)為Tr+1=2rC6rxr令r=4得展開式中x4的系數(shù)是24C64=240故為:24047.命題:“方程x2-1=0的解是x=±1”,其使用邏輯聯(lián)結(jié)詞的情況是()A.使用了邏輯聯(lián)結(jié)詞“且”B.使用了邏輯聯(lián)結(jié)詞“或”C.使用了邏輯聯(lián)結(jié)詞“非”D.沒有使用邏輯聯(lián)結(jié)詞答案:“x=±1”可以寫成“x=1或x=-1”,故選B.48.以知F是雙曲線x24-y212=1的左焦點(diǎn),A(1,4),P是雙曲線右支上的動點(diǎn),則|PF|+|PA|的最小值為______.答案:∵A點(diǎn)在雙曲線的兩只之間,且雙曲線右焦點(diǎn)為F′(4,0),∴由雙曲線性質(zhì)|PF|-|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5兩式相加得|PF|+|PA|≥9,當(dāng)且僅當(dāng)A、P、F’三點(diǎn)共線時(shí)等號成立.故為949.設(shè)與都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關(guān)于與的敘述正確的是()
A.=
B.與同向
C.∥
D.與有相同的位置向量答案:C50.如圖表示空間直角坐標(biāo)系的直觀圖中,正確的個(gè)數(shù)為()
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)答案:C第2卷一.綜合題(共50題)1.設(shè)i為虛數(shù)單位,若(x+i)(1-i)=y,則實(shí)數(shù)x,y滿足()
A.x=-1,y=1
B.x=-1,y=2
C.x=1,y=2
D.x=1,y=1答案:C2.如圖,AB是半圓O的直徑,C是AB延長線上一點(diǎn),CD切半圓于D,CD=4,AB=3BC,則AC的長是______.答案:∵CD是圓O的切線,∴由切割線定理得:CD2=CB×CA,∵AB=3BC,設(shè)BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴則AC的長是8.故填:8.3.如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點(diǎn)共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內(nèi)心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點(diǎn)共圓.4.M∪{1}={1,2,3}的集合M的個(gè)數(shù)是______.答案:∵M(jìn)∪{1}={1,2,3},∴M={1,2,3}或{2,3},則符合題意M的個(gè)數(shù)是2.故為:25.若a<b<c,x<y<z,則下列各式中值最大的一個(gè)是()
A.a(chǎn)x+cy+bz
B.bx+ay+cz
C.bx+cy+az
D.a(chǎn)x+by+cz答案:D6.把一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,則點(diǎn)(a,b)在直線x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,滿足條件的事件是點(diǎn)(a,b)在直線x+y=5左下方即a+b<5,可以列舉出所有滿足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結(jié)果,∴點(diǎn)在直線的下方的概率是636=16故選A.7.(選做題)已知x+2y=1,則x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上點(diǎn)的距離的平方∴x2+y2的最小值是(0,0)到x+2y=1的距離d的平方據(jù)點(diǎn)到直線的距離公式得d=11+4=15∴x2+y2的最小值是15故為158.某班從6名班干部(其中男生4人,女生2人)中選3人參加學(xué)校學(xué)生會的干部競選.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率.答案:(1)ξ的所有可能取值為0,1,2.依題意,得P(ξ=0)=C34C36=15,P(ξ=1)=C24C12C36=35,P(ξ=2)=C14C22C36=15.∴ξ的分布列為ξ012P153515∴Eξ=0×15+1×35+2×15=1.(2)設(shè)“男生甲被選中的情況下,女生乙也被選中”為事件C,“男生甲被選中”為事件A,“女生乙被選中”為事件B從4個(gè)男生、2個(gè)女生中選3人,男生甲被選中的種數(shù)為n(A)=C52=10,男生甲被選中,女生乙也被選中的種數(shù)為n(AB)=C41=4,∴P(C)=n(AB)n(A)=C14C25=410=25故在男生甲被選中的情況下,女生乙也被選中的概率為25.9.設(shè),則之間的大小關(guān)系是
.答案:b>a>c解析:略10.在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,下列說法正確的是()
A.若K2的觀測值為k=6.635,而p(K2≥6.635)=0.010,故我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病
B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說某人吸煙,那么他有99%的可能患有肺病
C.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推判出現(xiàn)錯(cuò)誤
D.以上三種說法都不正確答案:C11.已知下列命題(其中a,b為直線,α為平面):
①若一條直線垂直于一個(gè)平面內(nèi)無數(shù)條直線,則這條直線與這個(gè)平面垂直;
②若一條直線平行于一個(gè)平面,則垂直于這條直線的直線必垂直于這個(gè)平面;
③若a∥α,b⊥α,則a⊥b;
④若a⊥b,則過b有且只有一個(gè)平面與a垂直.
上述四個(gè)命題中,真命題是()A.①,②B.②,③C.②,④D.③,④答案:①平面內(nèi)無數(shù)條直線均為平行線時(shí),不能得出直線與這個(gè)平面垂直,將“無數(shù)條”改為“所有”才正確;故①錯(cuò)誤;②垂直于這條直線的直線與這個(gè)平面可以是任何的位置關(guān)系,有可能是平行、相交、線在面內(nèi),故②錯(cuò)誤.③若a∥α,b⊥α,則必有a⊥b,正確;④若a⊥b,則過b有且只有一個(gè)平面與a垂直,顯然正確.故選D.12.方程組的解集是[
]A.{5,1}
B.{1,5}
C.{(5,1)}
D.{(1,5)}答案:C13.方程組的解集是[
]A.
B.{x,y|x=3且y=-7}
C.{3,-7}
D.{(x,y)|x=3且y=-7}答案:D14.半徑分別為1和2的兩圓外切,作半徑為3的圓與這兩圓均相切,一共可作()個(gè).
A.2
B.3
C.4
D.5答案:D15.如圖,一個(gè)空間幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個(gè)圓,那么這個(gè)幾何體的側(cè)面積為()A.π4B.5π4C.πD.3π2答案:此幾何體是一個(gè)底面直徑為1,高為1的圓柱底面周長是2π×12=π故側(cè)面積為1×π=π故選C16.在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,下列說法正確的是()
①若K2的觀測值滿足K2≥6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺??;
②從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吸煙與患病有關(guān)系時(shí),我們說某人吸煙,那么他有99%的可能患有肺病;
③從統(tǒng)計(jì)量中得知有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤.
A.①
B.①③
C.③
D.②答案:C17.如圖所示直角梯形ABCD中,∠A=90°,PA⊥面ABCD,AD||BC,AB=BC=a,AD=2a,與底面ABCD成300角.若AE⊥PD,E為垂足,PD與底面成30°角.
(1)求證:BE⊥PD;
(2)求異面直線AE與CD所成的角的大?。鸢福簽榱擞?jì)算方便不妨設(shè)a=1.(1)證明:根據(jù)題意可得:以A為原點(diǎn),AB,AD,AP所在直線為坐標(biāo)軸建立直角坐標(biāo)系(如圖)則A(0,0,0),B(1,0,0)D(0,2,0)P(0,0,233)AB?PD=(1,0,0)?(0,2,-233)=0又AE?PD=0∴AB⊥PD,AE⊥PD所以PD⊥面BEA,BE?面BEA,∴PD⊥BE(2)∵PA⊥面ABCD,PD與底面成30°角,∴∠PDA=30°過E作EF⊥AD,垂足為F,則AE=AD?sin30°=1,∠EAF=60°AF=12,EF=32∴E(0,12,32),于是AE=(0,12,32)又C(1,1,0),D(0,2,0),CD=(-1,1,0)則COSθ=AE?CD|AE||CD|=24∴AE與CD所成角的余弦值為24.18.8的值為()
A.2
B.4
C.6
D.8答案:B19.在班級隨機(jī)地抽取8名學(xué)生,得到一組數(shù)學(xué)成績與物理成績的數(shù)據(jù):
數(shù)學(xué)成績6090115809513580145物理成績4060754070856090(1)計(jì)算出數(shù)學(xué)成績與物理成績的平均分及方差;
(2)求相關(guān)系數(shù)r的值,并判斷相關(guān)性的強(qiáng)弱;(r≥0.75為強(qiáng))
(3)求出數(shù)學(xué)成績x與物理成績y的線性回歸直線方程,并預(yù)測數(shù)學(xué)成績?yōu)?10的同學(xué)的物理成績.答案:(1)計(jì)算出數(shù)學(xué)成績與物理成績的平均分及方差;.x=100,.y=65,數(shù)學(xué)成績方差為750,物理成績方差為306.25;(4分)(2)求相關(guān)系數(shù)r的值,并判斷相關(guān)性的強(qiáng)弱;r=6675≈0.94>0.75,相關(guān)性較強(qiáng);(8分)(3)求出數(shù)學(xué)成績x與物理成績y的線性回歸直線方程,并預(yù)測數(shù)學(xué)成績?yōu)?10的同學(xué)的物理成績.y=0.6x+5,預(yù)測數(shù)學(xué)成績?yōu)?10的同學(xué)的物理成績?yōu)?1.(12分)20.已知一次函數(shù)f(x)=4x+3,且f(ax+b)=8x+7,則a-b=______.答案:∵f(x)=4x+3,f(ax+b)=4(ax+b)+3=4ax+4b+3=8x+7,∴4a=84b+3=7,解得a=2,b=1,∴a-b=1.故為:1.21.某?,F(xiàn)有高一學(xué)生210人,高二學(xué)生270人,高三學(xué)生300人,學(xué)校學(xué)生會用分層抽樣的方法從這三個(gè)年級的學(xué)生中隨機(jī)抽取n名學(xué)生進(jìn)行問卷調(diào)查,如果已知從高一學(xué)生中抽取的人數(shù)為7,那么從高三學(xué)生中抽取的人數(shù)應(yīng)為()
A.10
B.9
C.8
D.7答案:A22.(參數(shù)方程與極坐標(biāo)選講)在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2+2ρcosθ=0,點(diǎn)P的極坐標(biāo)為(2,π2),過點(diǎn)P作圓C的切線,則兩條切線夾角的正切值是______.答案:圓C的極坐標(biāo)方程ρ2+2ρcosθ=0,化為普通方程為x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)為圓心,以1為半徑的圓.點(diǎn)P的極坐標(biāo)為(2,π2),化為直角坐標(biāo)為(0,2).設(shè)兩條切線夾角為2θ,則sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故為43.23.已知0<a<2,復(fù)數(shù)z的實(shí)部為a,虛部為1,則|z|的取值范圍是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故選C.24.若點(diǎn)M,A,B,C對空間任意一點(diǎn)O都滿足則這四個(gè)點(diǎn)()
A.不共線
B.不共面
C.共線
D.共面答案:D25.某重點(diǎn)高中高二歷史會考前,進(jìn)行了五次歷史會考模擬考試,某同學(xué)在這五次考試中成績?nèi)缦拢?0,90,93,94,93,則該同學(xué)的這五次成績的平均值和方差分別為()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B26.將函數(shù)的圖象F按向量平移后所得到的圖象的解析式是,求向量.答案:向量解析:將函數(shù)的圖象F按向量平移后所得到的圖象的解析式是,求向量.27.利用獨(dú)立性檢驗(yàn)對兩個(gè)分類變量是否有關(guān)系進(jìn)行研究時(shí),若有99.5%的把握說事件A和B有關(guān)系,則具體計(jì)算出的數(shù)據(jù)應(yīng)該是()
A.K2≥6.635
B.K2<6.635
C.K2≥7.879
D.K2<7.879答案:C28.雙曲線(n>1)的兩焦點(diǎn)為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P
F1F2的面積為()
A.
B.1
C.2
D.4答案:B29.已知兩條直線a1x+b1y+1=0和a2x+b2y+1=0都過點(diǎn)A(2,3),則過兩點(diǎn)P1(a1,b1),P2(a2,b2)的直線方程為______.答案:∵A(2,3)是直線a1x+b1y+1=0和a2x+b2y+1=0的公共點(diǎn),∴2a1+3b1+1=0,且2a2+3b2+1=0,即兩點(diǎn)P1(a1,b1),P2(a2,b2)的坐標(biāo)都適合方程2x+3y+1=0,∴兩點(diǎn)(a1,b1)和(a2,b2)都在同一條直線2x+3y+1=0上,故點(diǎn)(a1,b1)和(a2,b2)所確定的直線方程是2x+3y+1=0,故為:2x+3y+1=0.30.某校有老師200人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個(gè)容量為n的樣本;已知從女學(xué)生中抽取的人數(shù)為80人,則n=______.答案:∵某校有老師200人,男學(xué)生1
200人,女學(xué)生1
000人.∴學(xué)校共有200+1200+1000人由題意知801000=n200+1200+1000,∴n=192.故為:19231.下列隨機(jī)變量ξ服從二項(xiàng)分布的是()
①隨機(jī)變量ξ表示重復(fù)拋擲一枚骰子n次中出現(xiàn)點(diǎn)數(shù)是3的倍數(shù)的次數(shù);
②某射手擊中目標(biāo)的概率為0.9,從開始射擊到擊中目標(biāo)所需的射擊次數(shù)ξ;
③有一批產(chǎn)品共有N件,其中M件為次品,采用有放回抽取方法,ξ表示n次抽取中出現(xiàn)次品的件數(shù)(M<N);
④有一批產(chǎn)品共有N件,其中M件為次品,采用不放回抽取方法,ξ表示n次抽取中出現(xiàn)次品的件數(shù)(M<N).
A.②③
B.①④
C.③④
D.①③答案:D32.用反證法證明命題:“三角形三個(gè)內(nèi)角至少有一個(gè)不大于60°”時(shí),應(yīng)假設(shè)______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,先把要證的結(jié)論進(jìn)行否定,得到要證的結(jié)論的反面,而命題:“三角形三個(gè)內(nèi)角至少有一個(gè)不大于60°”的否定為“三個(gè)內(nèi)角都大于60°”,故為三個(gè)內(nèi)角都大于60°.33.中心在坐標(biāo)原點(diǎn),離心率為的雙曲線的焦點(diǎn)在y軸上,則它的漸近線方程為()
A.
B.
C.
D.答案:D34.已知斜二測畫法得到的直觀圖△A′B′C′是正三角形,畫出原三角形的圖形.答案:由斜二測法知:B′C′不變,即BC與B′C′重合,O′A′由傾斜45°變?yōu)榕cx軸垂直,并且O′A′的長度變?yōu)樵瓉淼?倍,得到OA,由此得到原三角形的圖形ABC.35.若函數(shù)y=ax(a>1)在[0,1]上的最大值與最小值之和為3,則a=______.答案:①當(dāng)0<a<1時(shí)函數(shù)y=ax在[0,1]上為單調(diào)減函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為1,a∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2(舍)②當(dāng)a>1時(shí)函數(shù)y=ax在[0,1]上為單調(diào)增函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為a,1∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2故為:2.36.證明不等式的最適合的方法是()
A.綜合法
B.分析法
C.間接證法
D.合情推理法答案:B37.兩個(gè)樣本甲和乙,其中=10,=10,=0.055,=0.015,那么樣本甲比樣本乙波動()
A.大
B.相等
C.小
D.無法確定答案:A38.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設(shè)A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結(jié)論正確的是()
A.B與C互斥
B.A與C互斥
C.任意兩個(gè)事件均互斥
D.任意兩個(gè)事件均不互斥答案:B39.設(shè)兩個(gè)正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)的密度曲線如圖所示,則有()
A.μ1<μ2,σ1<σ2
B.μ1<μ2,σ1>σ2
C.μ1>μ2,σ1<σ2
D.μ1>μ2,σ1>σ2
答案:A40.已知直線l的參數(shù)方程為x=3+12ty=7+32t(t為參數(shù)),曲線C的參數(shù)方程為x=4cosθy=4sinθ(θ為參數(shù)).
(I)將曲線C的參數(shù)方程轉(zhuǎn)化為普通方程;
(II)若直線l與曲線C相交于A、B兩點(diǎn),試求線段AB的長.答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圓的方程為x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴線段AB的長為|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.41.用綜合法或分析法證明:
(1)如果a>0,b>0,則lga+b2≥lga+lgb2(2)求證6+7>22+5.答案:證明:(1)∵a>0,b>0,a+b2≥ab,∴l(xiāng)ga+b2≥lgab=lga+lgb2,即lga+b2≥lga+lgb2;(2)要證6+7>22+5,只需證明(6+7)
2>(8+5)2,即證明242>
240,也就是證明42>40,上式顯然成立,故原結(jié)論成立.42.已知拋物線C:y2=4x的焦點(diǎn)為F,點(diǎn)A在拋物線C上運(yùn)動.
(1)當(dāng)點(diǎn)A,P滿足AP=-2FA,求動點(diǎn)P的軌跡方程;
(2)設(shè)M(m,0),其中m為常數(shù),m∈R+,點(diǎn)A到M的距離記為d,求d的最小值.答案:(1)設(shè)動點(diǎn)P的坐標(biāo)為(x,y),點(diǎn)A的坐標(biāo)為(xA,yA),則AP=(x-xA,y-yA),因?yàn)镕的坐標(biāo)為(1,0),所以FA=(xA-1,yA),因?yàn)锳P=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到動點(diǎn)P的軌跡方程為y2=8-4x;(2)由題意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0時(shí),dmin=m;m-2>0,即m>2,xA=m-2時(shí),dmin=-4-4m.43.若矩陣A=
72
69
67
65
62
59
81
74
68
64
59
52
85
79
76
72
69
64
228
219
211
204
195
183
是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()
A.語文
B.?dāng)?shù)學(xué)
C.外語
D.都一樣答案:B44.已知有如下兩段程序:
問:程序1運(yùn)行的結(jié)果為______.程序2運(yùn)行的結(jié)果為______.
答案:程序1是計(jì)數(shù)變量i=21開始,不滿足i≤20,終止循環(huán),累加變量sum=0,這個(gè)程序計(jì)算的結(jié)果:sum=0;程序2計(jì)數(shù)變量i=21,開始進(jìn)入循環(huán),sum=0+21=22,其值大于20,循環(huán)終止,累加變量sum從0開始,這個(gè)程序計(jì)算的是sum=21.故為:0;21.45.參數(shù)方程x=2cosαy=3sinα(a為參數(shù))化成普通方程為______.答案:∵x=2cosαy=3sinα,∴cosα=x2sinα=y3∴(x2)2+(y3)2=cos2α+sin2α=1.即:參數(shù)方程x=2cosαy=3sinα化成普通方程為:x24+y29=1.故為:x24+y29=1.46.若點(diǎn)P(-1,3)在圓x2+y2=m2上,則實(shí)數(shù)m=______.答案:∵點(diǎn)P(-1,3)在圓x2+y2=m2上,∴點(diǎn)P坐標(biāo)代入,得(-1)2+(3)2=m2,即m2=4,解之得m=±2.故為:±247.已知A=(2,-4,-1),B=(-1,5,1),C=(3,-4,1),若=,=,則對應(yīng)的點(diǎn)為()
A.(5,-9,2)
B.(-5,9,-2)
C.(5,9,-2)
D.(5,-9,-2)答案:B48.已知x+5y+3z=1,則x2+y2+z2的最小值為______.答案:證明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,則x2+y2+z2的最小值為135,故為:135.49.已知直線l的方程為x=2-4
ty=1+3
t,則直線l的斜率為______.答案:直線x=2-4
ty=1+3
t,所以直線的普通方程為:(y-1)=-34(x-2);所以直線的斜率為:-34;故為:-34.50.如圖所示,設(shè)P為△ABC所在平面內(nèi)的一點(diǎn),并且AP=15AB+25AC,則△ABP與△ABC的面積之比等于()A.15B.12C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點(diǎn)共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C第3卷一.綜合題(共50題)1.某個(gè)命題與自然數(shù)n有關(guān),若n=k(k∈N*)時(shí)命題成立,那么可推得當(dāng)n=k+1時(shí)該命題也成立.現(xiàn)已知當(dāng)n=5時(shí),該命題不成立,那么可推得()
A.當(dāng)n=6時(shí),該命題不成立
B.當(dāng)n=6時(shí),該命題成立
C.當(dāng)n=4時(shí),該命題不成立
D.當(dāng)n=4時(shí),該命題成立答案:C2.以拋物線的焦點(diǎn)弦為直徑的圓與其準(zhǔn)線的位置關(guān)系是(
)
A.相切
B.相交
C.相離
D.以上均有可能答案:A3.設(shè)F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點(diǎn),P是第一象限內(nèi)該橢圓上的一點(diǎn),且P、F1、F2三點(diǎn)構(gòu)成一直角三角形,則點(diǎn)P的縱坐標(biāo)為______.答案:由題意,P是第一象限內(nèi)該橢圓上的一點(diǎn),且P、F1、F2三點(diǎn)構(gòu)成一直角三角形,故可分為兩類:①當(dāng)∠P為直角時(shí),設(shè)P的縱坐標(biāo)為y,則F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點(diǎn)∴|PF1|+|PF2|=4,|F1F2|=23∵∠P為直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②當(dāng)∠PF2F1為直角時(shí),P的橫坐標(biāo)為3設(shè)P的縱坐標(biāo)為y(y>0),則(3)24+y2=1,∴y=12故為:33
或124.已知兩曲線參數(shù)方程分別為x=5cosθy=sinθ(0≤θ<π)和x=54t2y=t(t∈R),它們的交點(diǎn)坐標(biāo)為______.答案:曲線參數(shù)方程x=5cosθy=sinθ(0≤θ<π)的直角坐標(biāo)方程為:x25+y2=1;曲線x=54t2y=t(t∈R)的普通方程為:y2=45x;解方程組:x25+y2=1y2=45x得:x=1y=255∴它們的交點(diǎn)坐標(biāo)為(1,255).故為:(1,255).5.設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),A是拋物線上的一點(diǎn),F(xiàn)A與x軸正向的夾角為60°,則|OA|為______.答案:過A作AD⊥x軸于D,令FD=m,則FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故為:212p6.利用計(jì)算機(jī)在區(qū)間(0,1)上產(chǎn)生兩個(gè)隨機(jī)數(shù)a和b,則方程有實(shí)根的概率為()
A.
B.
C.
D.1答案:A7.若a>0,b<0,直線y=ax+b的圖象可能是()
A.
B.
C.
D.
答案:C8.設(shè)向量a=(x+1,y),b=(x-1,y),點(diǎn)P(x,y)為動點(diǎn),已知|a|+|b|=4.
(1)求點(diǎn)p的軌跡方程;
(2)設(shè)點(diǎn)p的軌跡與x軸負(fù)半軸交于點(diǎn)A,過點(diǎn)F(1,0)的直線交點(diǎn)P的軌跡于B、C兩點(diǎn),試推斷△ABC的面積是否存在最大值?若存在,求其最大值;若不存在,請說明理由.答案:(1)由已知,(x+)2+y2+(x-1)2+1=4,所以動點(diǎn)P的軌跡M是以點(diǎn)E(-1,0),F(xiàn)(1,0)為焦點(diǎn),長軸長為4的橢圓.因?yàn)閏=1,a=2,則b2=a2-c2=3.故動點(diǎn)P的軌跡M方程是x24+y23=1(2)設(shè)直線BC的方程x=my+1與(1)中的橢圓方程x24+y23=1聯(lián)立消去x可得(3m2+4)y2+6my-9=0,設(shè)點(diǎn)B(x1,y1),C(x2,y2)則y1+y2=-6m3m2+4,y1y2=-93m2+4,所以|BC|=m2+1(y1+y2)2-4y1y2=12(m2+1)3m2+4點(diǎn)A到直線BC的距離d=31+m2S△ABC=12|BC|d=181+m23m2+4令1+m2=t,t≥1,∴S△ABC=12|BC|d=18t3t2+1=183t+1t≤92故三角形的面積最大值為929.等于()
A.a(chǎn)16
B.a(chǎn)8
C.a(chǎn)4
D.a(chǎn)2答案:C10.2005年10月,我國載人航天飛船“神六”飛行獲得圓滿成功.已知“神六”飛船變軌前的運(yùn)行軌道是一個(gè)以地心為焦點(diǎn)的橢圓,飛船近地點(diǎn)、遠(yuǎn)地點(diǎn)離地面的距離分別為200公里、250公里.設(shè)地球半徑為R公里,則此時(shí)飛船軌道的離心率為______.(結(jié)果用R的式子表示)答案:(I)設(shè)橢圓的方程為x2a2+y2b2=1由題設(shè)條件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25則此時(shí)飛船軌道的離心率為25225+R故為:25225+R.11.在空間坐標(biāo)中,點(diǎn)B是A(1,2,3)在yOz坐標(biāo)平面內(nèi)的射影,O為坐標(biāo)原點(diǎn),則|OB|等于()
A.
B.
C.2
D.答案:B12.集合{0,1}的子集有()個(gè).A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)答案:根據(jù)題意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4個(gè),故選D.13.在邊長為1的正方形ABCD中,若AB=a,BC=b,AC=c.則|a+b+2c|的值是______.答案:由題意可得|a|=|b|=1,|c|=2,a+
b=c,∴|a+b+2c|=|3c|=32,故為32.14.設(shè)空間兩個(gè)不同的單位向量
a=(x1,y1,0),
b=(x2,y2,0)與向量
c=(1,1,1)的夾角都等于45°.
(1)求x1+y1和x1y1的值;
(2)求<
a,
b>的大小.答案:(1)∵單位向量a=(x1,y1,0)與向量c=(1,1,1)的夾角等于45°∴|a|=x21+y21=1,cos45°=a?
c|a|?
|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°15.函數(shù)f(x)=ex(e為自然對數(shù)的底數(shù))對任意實(shí)數(shù)x、y,都有()
A.f(x+y)=f(x)f(y)
B.f(x+y)=f(x)+f(y)
C.f(xy)=f(x)f(y)
D.f(xy)=f(x)+f(y)答案:A16.已知
p:所有國產(chǎn)手機(jī)都有陷阱消費(fèi),則¬p是()
A.所有國產(chǎn)手機(jī)都沒有陷阱消費(fèi)
B.有一部國產(chǎn)手機(jī)有陷阱消費(fèi)
C.有一部國產(chǎn)手機(jī)沒有陷阱消費(fèi)
D.國外產(chǎn)手機(jī)沒有陷阱消費(fèi)答案:C17.
(理)
在長方體ABCD-A1B1C1D1中,以為基底表示,其結(jié)果是()
A.
B.
C.
D.答案:C18.長方體的共頂點(diǎn)的三個(gè)側(cè)面面積分別為3,5,15,則它的體積為______.答案:設(shè)長方體過同一頂點(diǎn)的三條棱長分別為a,b,c,∵從長方體一個(gè)頂點(diǎn)出發(fā)的三個(gè)面的面積分別為3,5,15,∴a?b=3,a?c=5,b?c=15∴(a?b?c)2=152∴a?b?c=15即長方體的體積為15,故為:15.19.如圖,在⊙O中,弦CD垂直于直徑AB,求證:CBCO=CDCA.答案:證明:連接AD,如圖所示:由垂徑定理得:AD=AC又∵OC=OB∴∠ADC=∠OBC=∠ACD=∠OCB∴△CAD∽△COB∴CBCO=CDCA.20.不等式-x≤1的解集是(
)。答案:{x|0≤x≤2}21.已知正方體ABCD-A1B1C1D1,點(diǎn)E,F(xiàn)分別是上底面A1C1和側(cè)面CD1的中心,求下列各式中的x,y的值:
(1)AC1=x(AB+BC+CC1),則x=______;
(2)AE=AA1+xAB+yAD,則x=______,y=______;
(3)AF=AD+xAB+yAA1,則x=______,y=______.答案:(1)根據(jù)向量加法的首尾相連法則,x=1;(2)由向量加法的三角形法則得,AE=AA1+A1E,由四邊形法則和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法則得,AF=AD+DF,由四邊形法則和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.22.試指出函數(shù)y=3x的圖象經(jīng)過怎樣的變換,可以得到函數(shù)y=(13)x+1+2的圖象.答案:把函數(shù)y=3x的圖象經(jīng)過3次變換,可得函數(shù)y=(13)x+1+2的圖象,步驟如下:y=3x沿y軸對稱y=(13)x左移一個(gè)單位y=(13)x+1上移2個(gè)單位y=(13)x+1+2.23.在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(-1,1),若取原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,則在下列選項(xiàng)中,不是點(diǎn)P極坐標(biāo)的是()
A.()
B.()
C.()
D.()答案:D24.數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,則數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差為______.答案:∵數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,∴數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差是22σ2=4σ2,故為:4σ2.25.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函數(shù)y=1x定義域?yàn)閤>0,又函數(shù)f(x)=log2x定義域x>0,故選A.26.已知a,b,c為正數(shù),且兩兩不等,求證:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:證明:不妨設(shè)a>b>c>0,則(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)
=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.27.已知直線l的方程為x=2-4
ty=1+3
t,則直線l的斜率為______.答案:直線x=2-4
ty=1+3
t,所以直線的普通方程為:(y-1)=-34(x-2);所以直線的斜率為:-34;故為:-34.28.如圖,AD是圓內(nèi)接三角形ABC的高,AE是圓的直徑,AB=6,AC=3,則AE×AD等于
______.答案:∵AE是直徑∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故為32.29.“cosα=12”是“α=π3”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件答案:∵“coa=12”?“a=π3+2kπ,k∈Z,或a=53π+2kπ,k∈Z”,“a=π3”?“coa=12”.故選D.30.根據(jù)如圖所示的偽代碼,可知輸出的結(jié)果a為______.答案:由題設(shè)循環(huán)體要執(zhí)行3次,圖知第一次循環(huán)結(jié)束后c=a+b=2,a=1.b=2,第二次循環(huán)結(jié)束后c=a+b=3,a=2.b=3,第三次循環(huán)結(jié)束后c=a+b=5,a=3.b=5,第四次循環(huán)結(jié)束后不滿足循環(huán)的條件是b<4,程序輸出的結(jié)果為3故為:3.31.圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ.
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過圓O1,圓O2交點(diǎn)的直線的直角坐標(biāo)方程.答案:以有點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.(1)x=ρcosθ,y=ρsinθ,由ρ=4cosθ得ρ2=4ρcosθ.所以x2+y2=4x.即x2+y2-4x=0為圓O1的直角坐標(biāo)方程.….(3分)同理x2+y2+4y=0為圓O2的直角坐標(biāo)方程.….(6分)(2)由x2+y2-4x=0x2+y2+4y=0解得x1=0y1=0x2=2y2=-2.即圓O1,圓O2交于點(diǎn)(0,0)和(2,-2).過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x.…(10分)32.
已知橢圓(θ為參數(shù))上的點(diǎn)P到它的兩個(gè)焦點(diǎn)F1、F2的距離之比,
且∠PF1F2=α(0<α<),則α的最大值為()
A.
B.
C.
D.答案:A33.已知平面向量.a,b的夾角為60°,.a=(3,1),|b|=1,則|.a+2b|=______.答案:∵平面向量.a,b的夾角為60°,.a=(3,1),∴|.a|=2.b2
再由|b|=1,可得.a?b=2×1cos60°=1,∴|.a+2b|=(.a+2b)2=a2+4a?b+4b2=23,故為23.34.某校選修乒乓球課程的學(xué)生中,高一年級有40名,高二年級有50名,現(xiàn)用分層抽樣的方法在這90名學(xué)生
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林省松原市前郭縣南部學(xué)區(qū)2024~2025學(xué)年度七年級上期中測試.名校調(diào)研 歷史(含答案)
- 2024年度云南省高校教師資格證之高等教育法規(guī)通關(guān)考試題庫帶答案解析
- 2024年度云南省高校教師資格證之高等教育學(xué)能力提升試卷A卷附答案
- 低空經(jīng)濟(jì)產(chǎn)業(yè)園風(fēng)險(xiǎn)管理方案
- 贛南師范大學(xué)《律師與公證制度》2022-2023學(xué)年第一學(xué)期期末試卷
- 贛南師范大學(xué)《地理信息系統(tǒng)原理》2021-2022學(xué)年第一學(xué)期期末試卷
- 阜陽師范大學(xué)《學(xué)習(xí)科學(xué)與技術(shù)》2022-2023學(xué)年第一學(xué)期期末試卷
- 阜陽師范大學(xué)《數(shù)學(xué)分析》2022-2023學(xué)年第一學(xué)期期末試卷
- 阜陽師范大學(xué)《鋼琴教學(xué)法》2021-2022學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)協(xié)和學(xué)院《保險(xiǎn)業(yè)務(wù)模擬實(shí)訓(xùn)》2022-2023學(xué)年第一學(xué)期期末試卷
- 融合基因課件
- 供應(yīng)商審計(jì)報(bào)告
- GA/T 544-2021多道心理測試系統(tǒng)通用技術(shù)規(guī)范
- 農(nóng)村土地承包經(jīng)營糾紛仲裁
- 廠房無償租賃合同
- 內(nèi)鏡室醫(yī)療質(zhì)量評價(jià)體系與考核標(biāo)準(zhǔn)
- 幕墻預(yù)埋件偏差處理措施
- jgj113-2015建筑玻璃技術(shù)規(guī)范
- 衛(wèi)生院衛(wèi)生室績效考核細(xì)則
- 關(guān)于新時(shí)代中國特色社會主義的論文
- 醫(yī)院與120調(diào)度中心協(xié)議書(參考模板)【精品范文】
評論
0/150
提交評論