2023年福建船政交通職業(yè)學院高職單招(數學)試題庫含答案解析_第1頁
2023年福建船政交通職業(yè)學院高職單招(數學)試題庫含答案解析_第2頁
2023年福建船政交通職業(yè)學院高職單招(數學)試題庫含答案解析_第3頁
2023年福建船政交通職業(yè)學院高職單招(數學)試題庫含答案解析_第4頁
2023年福建船政交通職業(yè)學院高職單招(數學)試題庫含答案解析_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年福建船政交通職業(yè)學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.某種燈泡的耐用時間超過1000小時的概率為0.2,有3個相互獨立的燈泡在使用1000小時以后,最多只有1個損壞的概率是()

A.0.008

B.0.488

C.0.096

D.0.104答案:D2.已知直線3x+2y-3=0和6x+my+1=0互相平行,則它們之間的距離是()

A.

B.

C.

D.答案:B3.在空間坐標中,點B是A(1,2,3)在yOz坐標平面內的射影,O為坐標原點,則|OB|等于()

A.

B.

C.2

D.答案:B4.復數z=(2+i)(1+i)在復平面上對應的點位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:因為z=(2+i)(1+i)=2+3i+i2=1+3i,所以復數對應點的坐標為(1,3),所以位于第一象限.故選A.5.設x,y,z∈R,且滿足:x2+y2+z2=1,x+2y+3z=14,則x+y+z=______.答案:根據柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)當且僅當x1=y2=z3時,上式的等號成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,結合x+2y+3z=14,可得x+2y+3z恰好取到最大值14∴x1=y2=z3=1414,可得x=1414,y=147,z=31414因此,x+y+z=1414+147+31414=3147故為:31476.已知a=20.5,,,則a,b,c的大小關系是()

A.a>c>b

B.a>b>c

C.c>b>a

D.c>a>b答案:B7.如圖所示的圓盤由八個全等的扇形構成,指針繞中心旋轉,可能隨機停止,則指針停止在陰影部分的概率為()A.12B.14C.16D.18答案:如圖:轉動轉盤被均勻分成8部分,陰影部分占1份,則指針停止在陰影部分的概率是P=18.故選D.8.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中的象是()A.2B.5C.6D.8答案:∵x=2,∴y=2x+1則y=2×2+1=5,那么集合A中元素2在B中的象是5故選B.9.下列說法中正確的是()A.一個命題的逆命題為真,則它的逆否命題一定為真B.“a>b”與“a+c>b+c”不等價C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”D.一個命題的否命題為真,則它的逆命題一定為真答案:A、逆命題與逆否命題之間不存在必然的真假關系,故A錯誤;B、由不等式的性質可知,“a>b”與“a+c>b+c”等價,故B錯誤;C、“a2+b2=0,則a,b全為0”的逆否命題是“若a,b不全為0,則a2+b2≠0”,故C錯誤;D、否命題和逆命題是互為逆否命題,有著一致的真假性,故D正確;故選D10.參數方程表示什么曲線?答案:見解析解析:解:顯然,則即得,即11.棱長為2的正方體ABCD-A1B1C1D1中,=(

A.

B.4

C.

D.-4答案:D12.已知定直線l及定點A(A不在l上),n為過點A且垂直于l的直線,設N為l上任意一點,線段AN的垂直平分線交n于B,點B關于AN的對稱點為P,求證:點P的軌跡為拋物線.答案:證明:如圖所示,建立平面直角坐標系,并且連結PA,PN,NB.由題意知PB垂直平分AN,且點B關于AN的對稱點為P,∴AN也垂直平分PB.∴四邊形PABN為菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故點P符合拋物線上點的條件:到定點A的距離和到定直線l的距離相等,∴點P的軌跡為拋物線.13.選做題

已知拋物線,過原點O直線與交于兩點。

(1)求的最小值;

(2)求的值答案:解:設直線的參數方程為與拋物線方程

聯(lián)立得14.求過點A(2,3)且被兩直線3x+4y-7=0,3x+4y+8=0截得線段為32的直線方程.答案:設所求直線l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線的夾角為45°,∴|

k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.15.如果關于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數b的取值范圍為______.答案:|x-4|-|x+5|的幾何意義就是數軸上的點到4的距離與到-5的距離的差,差的最大值為9,如果關于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數b的取值范圍為b>9;故為:b>9.16.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…當n∈N*時,試猜想12+22+32+…+n2的值,并用數學歸納法給予證明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用數學歸納法給予證明:(1)當n=1時,由已知得原式成立;(2)假設當n=k時,原式成立,即12+22+32+…+k2=k(k+1)(2k+1)6,那么,當n=k+1時,12+22+32+…+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6故n=k+1時,原式也成立.由(1)、(2)知12+22+32+…+n2=n(n+1)(2n+1)6成立.17.已知sint+cost=1,設s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0則cost=0,sint=1或cost=1,sint=0,當cost=0,sint=1時,s=cost+isint=i則f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)當cost=1,sint=0時,s=cost+isint=1則f(s)=1+s+s2+…sn=n+118.已知隨機變量ξ~N(3,22),若ξ=2η+3,則Dη=()

A.0

B.1

C.2

D.4答案:B19.已知、分別是的外接圓和內切圓;證明:過上的任意一點,都可作一個三角形,使得、分別是的外接圓和內切圓.答案:略解析:證:如圖,設,分別是的外接圓和內切圓半徑,延長交于,則,,延長交于;則,即;過分別作的切線,在上,連,則平分,只要證,也與相切;設,則是的中點,連,則,,,所以,由于在角的平分線上,因此點是的內心,(這是由于,,而,所以,點是的內心).即弦與相切.20.已知a=(1,0),b=(m,m)(m>0),則<a,b>=______.答案:∵b=(m,m)(m>0),∴b與第一象限的角平分線同向,且由原點指向遠處,而a=(1,0)同橫軸的正方向同向,∴<a,b>=45°,故為:45°21.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數單位),求復數z2+i的虛部.

(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數單位),且z1z2為純虛數,求實數a的值.答案:(Ⅰ)設z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復數z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數則3a-8=0,且4a+6≠0,解得a=8322.若A∩B=A∪B,則A______B.答案:設有集合W=A∪B=B∩C,根據并集的性質,W=A∪B?A?W,B?W,根據交集的性質,W=A∩B?W?A,W?B由集合子集的性質,A=B=W,故為:=.23.如圖的算法的功能是______.輸出結果i=______,i+2=______.答案:框圖首先輸入變量i的值,判斷i(i+2)=624,執(zhí)行輸出i,i+2;否則,i=i+2.算法結束.故此算法執(zhí)行的是求積為624的兩個連續(xù)偶數,i=24,i+2=26;故為:求積為624的兩個連續(xù)偶數,24,26.24.在極坐標系中,曲線p=4cos(θ-π3)上任意兩點間的距離的最大值為______.答案:將原極坐標方程p=4cos(θ-π3),化為:ρ=2cosθ+23sinθ,∴ρ2=2ρcosθ+23ρsinθ,化成直角坐標方程為:x2+y2-2x-23y=0,是一個半徑為2圓.圓上兩點間的距離的最大值即為圓的直徑,故填:4.25.2008年9月25日下午4點30分,“神舟七號”載人飛船發(fā)射升空,其運行的軌道是以地球的中心F為一個焦點的橢圓,若這個橢圓的長軸長為2a,離心率為e,則“神舟七號”飛船到地球中心的最大距離為______.答案:如圖,根據橢圓的幾何性質可知,頂點B到橢圓的焦點F的距離最大.最大為a+c=a+ae.故為:a+ae.26.有一個質地均勻的正四面體,它的四個面上分別標有1,2,3,4這四個數字.現將它連續(xù)拋擲3次,其底面落于桌面,記三次在正四面體底面的數字和為S,則“S恰好為4”的概率為______.答案:由題意知本題是一個古典概型,試驗發(fā)生包含的事件是拋擲這顆正四面體骰子兩次,共有4×4×4=64種結果,滿足條件的事件是三次在正四面體底面的數字和為S,S恰好為4,可以列舉出這種事件,(1,1,2),(1,2,1),(2,1,1)共有3種結果,根據古典概型概率公式得到P=364,故為:364.27.隋機變量X~B(6,),則P(X=3)=()

A.

B.

C.

D.答案:C28.已知集合M={2,a,b},N={2a,2,b2}且M=N.求a、b的值.答案:由M=N及集合中元素的互異性,得a=2ab=b2

①或a=b2b=2a

②解①得:a=0b=1或a=0b=0,解②得:a=14b=12,當a=0b=0時,違背了集合中元素的互異性,所以舍去,故a、b的值為a=0b=1或a=14b=12.29.圓錐曲線x=4secθ+1y=3tanθ的焦點坐標是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函數的運算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作雙曲線x216-y29=1向右平移1個單位得到,而雙曲線x216-y29=1的焦點為(-5,0),(5,0)故所求雙曲線的焦點為(-4,0),(6,0)故為:(-4,0),(6,0)30.某總體容量為M,其中帶有標記的有N個,現用簡單隨機抽樣方法從中抽出一個容量為m的樣本,則抽取的m個個體中帶有標記的個數估計為()A.mNMB.mMNC.MNmD.N答案:由題意知,總體中帶有標記的魚所占比例是NM,故樣本中帶有標記的個數估計為mNM,故選A.31.一位母親記錄了她的兒子3~9歲的身高數據,并由此建立身高與年齡的回歸模型為y=7.19x+73.93,用這個模型預測她的兒子10歲時的身高,則正確的敘述是()A.身高一定是145.83

cmB.身高在145.83

cm以上C.身高在145.83

cm左右D.身高在145.83

cm以下答案:∵身高與年齡的回歸模型為y=7.19x+73.93.∴可以預報孩子10歲時的身高是y=7.19x+73.93.=7.19×10+73.93=145.83則她兒子10歲時的身高在145.83cm左右.故選C.32.已知a、b是不共線的向量,AB=λa+b,AC=a+μb(λ,μ∈R),則A、B、C三點共線的充要條件是______.答案:由于AB,AC有公共點A,∴若A、B、C三點共線則AB與AC共線即存在一個實數t,使AB=tAC即λ=at1=μt消去參數t得:λμ=1反之,當λμ=1時AB=1μa+b此時存在實數1μ使AB=1μAC故AB與AC共線又由AB,AC有公共點A,∴A、B、C三點共線故A、B、C三點共線的充要條件是λμ=133.已知點A(1,2),直線l1:x=1+3ty=2-4t(t為參數)與直線l2:2x-4y=5相交于點B,則A、B兩點之間的距離|AB|=______.答案:將x=1+3t,y=2-4t代入2x-4y=5,得t=12,所以兩直線的交點坐標為(52,0)所以|AB|=(1-52)2+(2-0)2

=52.故為:5234.橢圓x225+y29=1的兩焦點為F1,F2,一直線過F1交橢圓于P、Q,則△PQF2的周長為______.答案:∵a=5,由橢圓第一定義可知△PQF2的周長=4a.∴△PQF2的周長=20.,故為20.35.對于任意空間四邊形,試證明它的一組對邊中點的連線與另一組對邊可平行于同一平面.答案:證明:如圖所示,空間四邊形ABCD,E、F分別為AB、CD的中點,利用多邊形加法法則可得①又E、F分別是AB、CD的中點,故有②將②代入①后,兩式相加得即與共面,∴EF與AD、BC可平行于同一平面.36.如圖,圓心角∠AOB=120°,P是AB上任一點(不與A,B重合),點C在AP的延長線上,則∠BPC等于______.

答案:解:設點E是優(yōu)弧AB(不與A、B重合)上的一點,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故為60°.37.(理)下列以t為參數的參數方程中表示焦點在y軸上的橢圓的是()

A.

B.(a>b>0)

C.

D.

答案:C38.用數學歸納法證明不等式成立,起始值至少應取為()

A.7

B.8

C.9

D.10答案:B39.使方程

mx+ny+r=0與方程

2mx+2ny+r+1=0表示兩條直線平行(不重合)的等價條件是()A.m=n=r=2B.m2+n2≠0,且r≠1C.mn>0,且r≠1D.mn<0,且r≠1答案:mx+ny+r=0與方程

2mx+2ny+r+1=0表示兩條直線平行(不重合)的等價條件是m2+n2≠0,且m2m=n2n≠rr+1,即m2+n2≠0,且r≠1,故選B.40.關于x的方程(m+3)x2-4mx+2m-1=0的兩根異號,且負數根的絕對值比正數根大,那么實數m的取值范圍是()

A.-3<m<0

B.0<m<3

C.m<-3或m>0

D.m<0或m>3答案:A41.已知橢圓的焦點為F1,F2,A在橢圓上,B在F1A的延長線上,且|AB|=|AF2|,則B點的軌跡形狀為()

A.橢圓

B.雙曲線

C.圓

D.兩條平行線答案:C42.已知P(B|A)=,P(A)=,則P(AB)等于()

A.

B.

C.

D.答案:C43.已知直線經過點A(0,4)和點B(1,2),則直線AB的斜率為()

A.3

B.-2

C.2

D.不存在答案:B44.對于5年可成材的樹木,從栽種到5年成材的木材年生長率為18%,以后木材的年生長率為10%.樹木成材后,既可以出售樹木,重栽新樹苗;也可以讓其繼續(xù)生長.問:哪一種方案可獲得較大的木材量?(注:只需考慮10年的情形)(參考數據:lg2=0.3010,lg1.1=0.0414)答案:由題意,第一種得到的木材為(1+18%)5×2第二種得到的木材為(1+18%)5×(1+10%)5第一種除以第二種的結果為2(1+10%)5=21.61>1所以第一種方案可獲得較大的木材量.45.已知拋物線的頂點在原點,焦點在x軸的正半軸上,F為焦點,A,B,C為拋物線上的三點,且滿足FA+FB+FC=0,|FA|+|FB|+|FC|=6,則拋物線的方程為______.答案:設向量FA,FB,FC的坐標分別為(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴拋物線方程為y2=4x.故為:y2=4x.46.(文)不等式的解集是(

)A.B.C.D.答案:D解析:【思路分析】:原不等式可化為,得,故選D.【命題分析】考查不等式的解法,要求同解變形.47.下面程序運行后,輸出的值是()

A.42

B.43

C.44

D.45

答案:C48.若0<x<1,則2x,(12)x,(0.2)x之間的大小關系為()A.2x<(0.2)x<(12)xB.2x<(12)x<(0.2)xC.(12)x<(0.2)x<2xD.(0.2)x<(12)x<2x答案:由題意考察冪函數y=xn(0<n<1),利用冪函數的性質,∵0<n<1,∴冪函數y=xn在第一象限是增函數,又2>12>0.2∴2x>(12)x>(0.2)x故選D49.設P是邊長為23的正△ABC內的一點,x,y,z是P到三角形三邊的距離,則x+y+z的最大值為______.答案:正三角形的邊長為a=23,可得它的高等于32a=3∵P是正三角形內部一點∴點P到三角形三邊的距離之和等于正三角形的高,即x+y+z=3∵(x+y+z)2=(1×x+1×y+1×z)2≤(1+1+1)(x+y+z)=9∴x+y+z≤3,當且僅當x=y=z=1時,x+y+z的最大值為3故為:350.設O為坐標原點,F為拋物線的焦點,A是拋物線上一點,若·=,則點A的坐標是

)A.B.C.D.答案:B解析:略第2卷一.綜合題(共50題)1.有一個正四棱臺形狀的油槽,可以裝油190L,假如它的兩底面邊長分別等于60cm和40cm,求它的深度.答案:由于臺體的體積V=13(S+SS′+S′)h,則h=3VS+SS′+S′=3×1900003600+2400+1600=75cm.故它的深度為75cm.2.已知2a=3b=6c則有()

A.∈(2,3)

B.∈(3,4)

C.∈(4,5)

D.∈(5,6)答案:C3.已知曲線x2a+y2b=1和直線ax+by+1=0(a,b為非零實數),在同一坐標系中,它們的圖形可能是()A.

B.

C.

D.

答案:A選項中,直線的斜率大于0,故系數a,b的符號相反,此時曲線應是雙曲線,故不對;B選項中直線的斜率小于0,故系數a,b的符號相同且都為負,此時曲線不存在,故不對;C選項中,直線斜率為正,故系數a,b的符號相反,且a正,b負,此時曲線應是焦點在x軸上的雙曲線,圖形符合結論,可選;D選項中不正確,由C選項的判斷可知D不正確.故選D4.設a=(x,y,3),b=(3,3,5),且a⊥b,則x+y=()A.1B.-1C.-5D.5答案:∵a=(x,y,3),b=(3,3,5),且a⊥b,∴a?b=3x+3y+15=0,∴x+y=-5,故選

C.5.為了了解某社區(qū)居民是否準備收看奧運會開幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進行調查,若60~70歲這個年齡段中抽查了8人,那么x為()

A.90

B.120

C.180

D.200答案:D6.對于一組數據的兩個函數模型,其殘差平方和分別為153.4

和200,若從中選取一個擬合程度較好的函數模型,應選殘差平方和為______的那個.答案:殘差的平方和是用來描述n個點與相應回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個模型.故為:153.4.7.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共線;④共線向量一定相等;⑤長度相等的向量是相等向量;⑥平行于同一個向量的兩個向量是共線向量,其中正確的命題是______.答案:∵平行向量即為共線向量其定義是方向相同或相反;相等向量的定義是模相等、方向相同;①平行向量不一定相等;故錯;②不相等的向量也可能不平行;故錯;③相等向量一定共線;正確;④共線向量不一定相等;故錯;⑤長度相等的向量方向相反時不是相等向量;故錯;⑥平行于零向量的兩個向量是不一定是共線向量,故錯.其中正確的命題是③.故為:③.8.已知點P1(3,-5),P2(-1,-2),在直線P1P2上有一點P,且|P1P|=15,則P點坐標為()

A.(-9,-4)

B.(-14,15)

C.(-9,4)或(15,-14)

D.(-9,4)或(-14,15)答案:C9.如圖,⊙O內切于△ABC的邊于D,E,F,AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.

(1)求證:圓心O在直線AD上.

(2)求證:點C是線段GD的中點.答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線∴圓心O在直線AD上.(5分)(II)連接DF,由(I)知,DH是⊙O的直徑,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O與AC相切于點F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴點C是線段GD的中點.(10分)10.函數y=(43)x,x∈N+是()A.增函數B.減函數C.奇函數D.偶函數答案:由正整數指數函數不具有奇偶性,可排除C、D;因為函數y=(43)x,x∈N+的底數43大于1,所以此函數是增函數.故選A.11.若一輛汽車每天行駛的路程比原來多19km,則該汽車在8天內行駛的路程s(km)就超過2200km;若它每天行駛的路程比原來少12km,則它行駛同樣的路程s(km)就得花9天多的時間。這輛汽車原來每天行駛的路程(km)的范圍是(

A.(259,260)

B.(258,260)

C.(257,260)

D.(256,260)答案:D12.(本小題滿分10分)選修4-1:幾何證明選講

如圖,的角平分線的延長線交它的外接圓于點.

(Ⅰ)證明:;

(Ⅱ)若的面積,求的大小.答案:(Ⅰ)證明見解析(Ⅱ)90°解析:本題主要考查平面幾何中與圓有關的定理及性質的應用、三角形相似及性質的應用.證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.因為∠AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因為△ABE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.則sin∠BAC=1,又∠BAC為三角形內角,所以∠BAC=90°.【點評】在圓的有關問題中經常要用到弦切角定理、圓周角定理、相交弦定理等結論,解題時要注意根據已知條件進行靈活的選擇,同時三角形相似是證明一些與比例有關問題的的最好的方法.13.求證:答案:證明見解析解析:證明:此題采用了從第三項開始拆項放縮的技巧,放縮拆項時,不一定從第一項開始,須根據具體題型分別對待,即不能放的太寬,也不能縮的太窄,真正做到恰倒好處。14.要考察某種品牌的850顆種子的發(fā)芽率,抽取60粒進行實驗.利用隨機數表抽取種子時,先將850顆種子按001,002,…,850進行編號,如果從隨機數表第8行第11列的數1開始向右讀,請你依次寫出最先檢測的4顆種子的編號______,______,______,______.

(下面摘取了隨機數表第7行至第9行的一部分)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38.答案:由于隨機數表中第8行的數字為:63

01

63

78

59

16

95

5567

19

98

10

50

71

75

12

86

73

58

07其第11列數字為1,故產生的第一個數字為:169,第二個數字為:555,第三個數字為:671,第四個數字為:998(超出編號范圍舍)第五個數字為:105故為:169,555,671,10515.已知向量,滿足:||=3,||=5,且=λ,則實數λ=()

A.

B.

C.±

D.±答案:C16.設A(1,-1,1),B(3,1,5),則線段AB的中點在空間直角坐標系中的位置是()

A.在y軸上

B.在xOy面內

C.在xOz面內

D.在yOz面內答案:C17.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,則點P一定在()A.∠AOB平分線所在直線上B.線段AB中垂線上C.AB邊所在直線上D.AB邊的中線上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|

和b|b|

是△OAB中邊OA、OB上的單位向量,∴(a|a|+b|b|

)在∠AOB平分線線上,∴t(a|a|+b|b|

)在∠AOB平分線線上,∴則點P一定在∠AOB平分線線上,故選A.18.某計算機程序每運行一次都隨機出現一個五位的二進制數A=

,其中A的各位數中,a1=1,ak(k=2,3,4,5)出現0的概率為,出現1的概率為.記ξ=a1+a2+a3+a4+a5,當程序運行一次時,ξ的數學期望Eξ=()

A.

B.

C.

D.答案:C19.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內,則m的取值范圍是(

)

A.m≤1

B.0<m≤1

C.m>1

D.0<m<1答案:B20.點M(4,)化成直角坐標為()

A.(2,)

B.(-2,-)

C.(,2)

D.(-,-2)答案:B21.(幾何證明選講選做題)如圖,已知四邊形ABCD內接于⊙O,且AB為⊙O的直徑,直線MN切

⊙O于D,∠MDA=45°,則∠DCB=______.答案:連接BD,∵AB為⊙O的直徑,直線MN切⊙O于D,∠MDA=45°,∴∠ABD=45°,∠ADB=90°,∴∠DCB=∠ABD+∠ADB=45°+90°=135°.故為:135°.22.已知方程(1+k)x2-(1-k)y2=1表示焦點在x軸上的雙曲線,則k的取值范圍為(

A.-1<k<1

B.k>1

C.k<-1

D.k>1或k<-1答案:A23.在7塊并排、形狀大小相同的試驗田上進行施化肥量對水稻產量影響的試驗,得到如下表所示的一組數據(單位:kg).

(1)畫出散點圖;

(2)求y關于x的線性回歸方程;

(3)若施化肥量為38kg,其他情況不變,請預測水稻的產量.答案:(1)根據題表中數據可得散點圖如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根據回歸直線方程系數的公式計算可得回歸直線方程是?y=4.75x+257.(3)把x=38代入回歸直線方程得y=438,可以預測,施化肥量為38kg,其他情況不變時,水稻的產量是438kg.24.“sinx=siny”是“x=y”的()A.充要條件B.充分不必要條件C.必要不充分條件D.既不充分也不必要條件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反過來,若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分條件.故選C.25.設某批電子手表正品率為,次品率為,現對該批電子手表進行測試,設第X次首次測到正品,則P(X=3)等于()

A.

B.

C.

D.答案:C26.已知在一場比賽中,甲運動員贏乙、丙的概率分別為0.8,0.7,比賽沒有平局.若甲分別與乙、丙各進行一場比賽,則甲取得一勝一負的概率是______.答案:根據題意,甲取得一勝一負包含兩種情況,甲勝乙負丙,概率為:0.8×0.3=0.24;甲勝丙負乙,概率為:0.2×0.7=0.14;∴甲取得一勝一負的概率為0.24+0.14=0.38故為0.3827.“cosα=12”是“α=π3”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件答案:∵“coa=12”?“a=π3+2kπ,k∈Z,或a=53π+2kπ,k∈Z”,“a=π3”?“coa=12”.故選D.28.考慮坐標平面上以O(0,0),A(3,0),B(0,4)為頂點的三角形,令C1,C2分別為△OAB的外接圓、內切圓.請問下列哪些選項是正確的?

(1)C1的半徑為2

(2)C1的圓心在直線y=x上

(3)C1的圓心在直線4x+3y=12上

(4)C2的圓心在直線y=x上

(5)C2的圓心在直線4x+3y=6上.答案:O,A,B三點的位置如右圖所示,C1,C2為△OAB的外接圓與內切圓,∵△OAB為直角三角形,∴C1為以線段AB為直徑的圓,故半徑為12|AB|=52,所以(1)選項錯誤;又C1的圓心為線段AB的中點(32,2),此點在直線4x+3y=12上,所以選項(2)錯誤,選項(3)正確;如圖,P為△OAB的內切圓C2的圓心,故P到△OAB的三邊距離相等均為圓C2的半徑r.連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐標為(1,1),此點在y=x上.所以選項(4)正確,選項(5)錯誤,綜上,正確的選項有(3)、(4).29.經過拋物線y2=2x的焦點且平行于直線3x-2y+5=0的直線的方程是()

A.6x-4y-3=0

B.3x-2y-3=0

C.2x+3y-2=0

D.2x+3y-1=0答案:A30.已知|a|<1,|b|<1,求證:<1.答案:證明略解析:∵<1<1a2+b2+2ab<1+2ab+a2b2a2b2-a2-b2+1>0

(a2-1)(b2-1)>0又|a|<1,|b|<1,∴(a2-1)(b2-1)>0.∴原不等式成立.31.從裝有2個紅球和2個白球的口袋內任取2個球,那么互斥而不對立的兩個事件是()

A.至少有1個白球;都是白球

B.至少有1個白球;至少有1個紅球

C.恰有1個白球;恰有2個白球

D.至少有一個白球;都是紅球答案:C32.現有一個關于平面圖形的命題:如圖,同一個平面內有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24.類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為______.答案:∵同一個平面內有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24,類比到空間有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為a38,故為a38.33.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長______.答案:設另一弦長xcm;由于另一弦被分為3:8的兩段,故兩段的長分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm34.如圖所示,正方體的棱長為1,點A是其一棱的中點,則點A在空間直角坐標系中的坐標是()

A.(,,1)

B.(1,1,)

C.(,1,)

D.(1,,1)

答案:B35.用反證法證明命題:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,則a,b,c,d中至少有一個負數”時的假設為()

A.a,b,c,d中至少有一個正數

B.a,b,c,d全為正數

C.a,b,c,d全都大于等于0

D.a,b,c,d中至多有一個負數答案:C36.某公司為慶祝元旦舉辦了一個抽獎活動,現場準備的抽獎箱里放置了分別標有數字1000、800﹑600、0的四個球(球的大小相同).參與者隨機從抽獎箱里摸取一球(取后即放回),公司即贈送與此球上所標數字等額的獎金(元),并規(guī)定摸到標有數字0的球時可以再摸一次﹐但是所得獎金減半(若再摸到標有數字0的球就沒有第三次摸球機會),求一個參與抽獎活動的人可得獎金的期望值是多少元.答案:設ξ表示摸球后所得的獎金數,由于參與者摸取的球上標有數字1000,800,600,0,當摸到球上標有數字0時,可以再摸一次,但獎金數減半,即分別為500,400,300,0.則ξ的所有可能取值為1000,800,600,500,400,300,0.依題意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,則ξ的分布列為∴所求期望值為Eξ=14(1000+800+600)+116(500+400+300+0)=675元.37.直線y=1與直線y=3x+3的夾角為______答案:l1與l2表示的圖象為(如下圖所示)y=1與x軸平行,y=3x+3與x軸傾斜角為60°,所以y=1與y=3x+3的夾角為60°.故為60°38.下列四個命題中,正確的有

①;

②;

③,使;

④,使為29的約數.答案:兩解析::①∵(-3)2-4×2×40,∴①正確;②∵2×(-1)+1=-1x,∴③不正確;④x=1是29的約數,∴④正確;∴正確的有兩個點評:本題考查全稱命題、特稱命題,容易題39.先后拋擲兩枚均勻的正方體骰子(它們的六個面分別標有點數1、2、3、4、5、6),骰子朝上的面的點數分別為X、Y,則log2XY=1的概率為()A.16B.536C.112D.12答案:∵log2XY=1∴Y=2X,滿足條件的X、Y有3對而骰子朝上的點數X、Y共有36對∴概率為336=112故選C.40.已知兩條直線y=ax-2和y=(a+2)x+1互相垂直,則a等于(

A.2

B.1

C.0

D.-1答案:D41.若3π2<α<2π,則直線xcosα+ysinα=1必不經過()A.第一象限B.第二象限C.第三象限D.第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直線過(0,sinα),(cosα,0)兩點,因而直線不過第二象限.故選B42.已知函數y=f(x)是偶函數,其圖象與x軸有四個交點,則f(x)=0的所有實數根之和為______.答案:∵函數y=f(x)是偶函數∴其圖象關于y軸對稱∴其圖象與x軸有四個交點也關于y軸對稱∴方程f(x)=0的所有實根之和為0故為:043.如圖,已知△ABC,過頂點A的圓與邊BC切于BC的中點P,與邊AB、AC分別交于點M、N,且CN=2BM,點N平分AC.則AM:BM=()

A.2

B.4

C.6

D.7

答案:D44.過拋物線y2=2px(p>0)的焦點F的直線與拋物線相交于M,N兩點,自M,N向準線l作垂線,垂足分別為M1,N1,則∠M1FN1等于()

A.45°

B.60°

C.90°

D.120°答案:C45.一個試驗要求的溫度在69℃~90℃之間,用分數法安排試驗進行優(yōu)選,則第一個試點安排在(

)。(取整數值)答案:82°46.如圖,四面體ABCD中,點E是CD的中點,記=(

A.

B.

C.

D.

答案:B47.已知復數z的模為1,且復數z的實部為13,則復數z的虛部為______.答案:設復數的虛部是b,∵復數z的模為1,且復數z的實部為13,∴(13)2+b2=1,∴b2=89,∴b=±223故為:±22348.頂點在原點,焦點是(0,5)的拋物線方程是()

A.x2=20y

B.y2=20x

C.y2=x

D.x2=y答案:A49.無論m,n取何實數值,直線(3m-n)x+(m+2n)y-n=0都過定點P,則P點坐標為

A.(-1,3)

B.

C.

D.答案:D50.已知0<a<1,loga(1-x)<logax則()

A.0<x<1

B.x<

C.0<x<

D.<x<1答案:C第3卷一.綜合題(共50題)1.

在△ABC中,點D在線段BC的延長線上,且BC=3CD,點O在線段CD上(與點C、D不重合),若AO=xAB+(1-x)AC,則x的取值范圍是()

A.

B.

C.

D.答案:D2.已知曲線x2a+y2b=1和直線ax+by+1=0(a,b為非零實數),在同一坐標系中,它們的圖形可能是()A.

B.

C.

D.

答案:A選項中,直線的斜率大于0,故系數a,b的符號相反,此時曲線應是雙曲線,故不對;B選項中直線的斜率小于0,故系數a,b的符號相同且都為負,此時曲線不存在,故不對;C選項中,直線斜率為正,故系數a,b的符號相反,且a正,b負,此時曲線應是焦點在x軸上的雙曲線,圖形符合結論,可選;D選項中不正確,由C選項的判斷可知D不正確.故選D3.如圖,一個空間幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側面積為()A.π4B.5π4C.πD.3π2答案:此幾何體是一個底面直徑為1,高為1的圓柱底面周長是2π×12=π故側面積為1×π=π故選C4.已知一9行9列的矩陣中的元素是由互不相等的81個數組成,a11a12…a19a21a22…a29…………a91a92…a99若每行9個數與每列的9個數按表中順序分別構成等差數列,且正中間一個數a55=7,則矩陣中所有元素之和為______.答案:∵每行9個數按從左至右的順序構成等差數列,∴a11+a12+a13+…+a18+a19=9a15,a21+a22+a23+…+a28+a29=9a25,a31+a32+a33+…+a38+a39=9a35,a41+a42+a43+…+a48+a49=9a45,…a91+a92+a93+…+a98+a99=9a95,∵每列的9個數按從上到下的順序也構成等差數列,∴a15+a25+a35+…+a85+a95=9a55,∴表中所有數之和為81a55=567,故為567.5.函數f(x)=-2x+1(x∈[-2,2])的最小、最大值分別為()A.3,5B.-3,5C.1,5D.5,-3答案:因為f(x)=-2x+1(x∈[-2,2])是單調遞減函數,所以當x=2時,函數的最小值為-3.當x=-2時,函數的最大值為5.故選B.6.關于生活中的圓錐曲線,有下面幾個結論:

(1)標準田徑運動場的內道是一個橢圓;

(2)接受衛(wèi)星轉播的電視信號的天線設備,其軸截面與天線設備的交線是拋物線;

(3)大型熱電廠的冷卻通風塔,其軸截面與通風塔的交線是雙曲線;

(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.

其中正確命題的序號是______(把你認為正確命題的序號都填上).答案:(1)標準田徑運動場的內道是有直道和彎道部分是半圓組成,不是橢圓.故錯誤(2)接受衛(wèi)星轉播的電視信號的天線設備,其軸截面與天線設備的交線是拋物線.故正確.(3)大型熱電廠的冷卻通風塔,其軸截面與通風塔的交線是雙曲線.故正確.(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.故正確.故為:(2)(3)(4)7.半徑為R的球內接一個正方體,則該正方體的體積為()A.22RB.4π3R3C.893R3D.193R3答案:∵半徑為R的球內接一個正方體,設正方體棱長為a,正方體的對角線過球心,可得正方體對角線長為:a2+a2+a2=2R,可得a=2R3,∴正方體的體積為a3=(2R3)3=83R39,故選C;8.如圖,l1、l2、l3是同一平面內的三條平行直線,l1與l2間的距離是1,l2與l3間的距離是2,正三角形ABC的三頂點分別在l1、l2、l3上,則△ABC的邊長是()

A.2

B.

C.

D.

答案:D9.已知正方形ABCD的邊長為1,=,=,=,則的模等于(

A.0

B.2+

C.

D.2答案:D10.如圖,設P,Q為△ABC內的兩點,且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為______.答案:設AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB

所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45故為:4511.否定結論“至少有一個解”的說法中,正確的是()

A.至多有一個解

B.至少有兩個解

C.恰有一個解

D.沒有解答案:D12.若曲線C的極坐標方程為

ρcos2θ=2sinθ,則曲線C的普通方程為______.答案:曲線C的極坐標方程為ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化為直角坐標方程為x2=2y,故為x2=2y13.某廠2011年的產值為a萬元,預計產值每年以7%的速度增加,則該廠到2022年的產值為______萬元.答案:2011年產值為a,增長率為7%,2012年產值為a+a×7%=a(1+7%),2013年產值為a(1+7%)+a(1+7%)×7%=a(1+7%)2,…,2022年的產值為a(1+7%)11.故為:a(1+7%)11.14.(1)求過兩直線l1:7x-8y-1=0和l2:2x+17y+9=0的交點,且平行于直線2x-y+7=0的直線方程.

(2)求點A(--2,3)關于直線l:3x-y-1=0對稱的點B的坐標.答案:(1)聯(lián)立兩條直線的方程可得:7x-8y-1=02x+17y+9=0,解得x=-1127,y=-1327所以l1與l2交點坐標是(-1127,-1327).(2)設與直線2x-y+7=0平行的直線l方程為2x-y+c=0因為直線l過l1與l2交點(-1127,-1327).所以c=13所以直線l的方程為6x-3y+1=0.點P(-2,3)關于直線3x-y-1=0的對稱點Q的坐標(a,b),則b-3a+2×3=-1,且3×a-22-b+32-1=0,解得a=10且b=-1,對稱點的坐標(10,-1)15.已知雙曲線的兩漸近線方程為y=±32x,一個焦點坐標為(0,-26),

(1)求此雙曲線方程;

(2)寫出雙曲線的準線方程和準線間的距離.答案:(1)由題意得,c=26,ba=32,26=a2+b2,∴a2=18,b2=8,故該雙曲線的標準方程為y218-x28=1.(2)由(1)得,雙曲線的準線方程為y=±1826x;準線間的距離為2a2c=2×1826=182613.16.設函數f(x)=(1-2a)x+b是R上的增函數,則()A.a>12B.a<12C.a≥12D.a≤12答案:∵函數f(x)=(1-2a)x+b是R上的增函數,∴1-2a>0,∴a<12.故選B.17.命題“存在x0∈R,2x0≤0”的否定是()

A.不存在x0∈R,2x0>0

B.存在x0∈R,2x0≥0

C.對任意的x∈R,2x≤0

D.對任意的x∈R,2x>0答案:D18.俊、杰兄弟倆分別在P、Q兩籃球隊效力,P隊、Q隊分別有14和15名球員,且每個隊員在各自隊中被安排首發(fā)上場的機會是均等的,則P、Q兩隊交戰(zhàn)時,俊、杰兄弟倆同為首發(fā)上場交戰(zhàn)的概率是(首發(fā)上場各隊五名隊員)(

)A.B.C.D.答案:B解析:解:P(俊首發(fā))=

P(杰首發(fā))==P(俊、杰同首發(fā))=

選B評析:考察考生等可能事件的概率與相互獨立事件的概率問題。19.下列三句話按“三段論”模式排列順序正確的是()

①y=sin

x(x∈R

)是三角函數;②三角函數是周期函數;

③y=sin

x(x∈R

)是周期函數.

A.①②③

B.②①③

C.②③①

D.③②①答案:B20.(幾何證明選講選選做題)如圖,圓的兩條弦AC、BD相交于P,弧AB、BC、CD、DA的度數分別為60°、105°、90°、105°,則PAPC=______.答案:連接AB,CD∵弧AB、CD、的度數分別為60°、90°,∴弦AB的長度等于半徑,弦CD的長度等于半徑的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故為:2221.若集合A={x|3≤x<7},B={x|2<x<10},則A∪B=______.答案:因為集合A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故為:{x|2<x<10}.22.拋擲兩枚骰子各一次,記第一枚骰子擲出的點數與第二枚骰子擲出的點數的差為X,則“X>4”表示試驗的結果為()

A.第一枚為5點,第二枚為1點

B.第一枚大于4點,第二枚也大于4點

C.第一枚為6點,第二枚為1點

D.第一枚為4點,第二枚為1點答案:C23.若函數f(x)=x+1的值域為(2,3],則函數f(x)的定義域為______.答案:∵f(x)=x+1的值域為(2,3],∴2<x+1≤3∴1<x≤2故為:(1,2]24.如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8.BC是⊙O的直徑,AB=AC=6,

OE∥AD.

(1)求二面角B-AD-F的大??;

(2)求直線BD與EF所成的角的余弦值.答案:(1)二面角B—AD—F的大小為45°(2)直線BD與EF所成的角的余弦值為解析:(1)∵AD與兩圓所在的平面均垂直,∴AD⊥AB,AD⊥AF,故∠BAF是二面角B—AD—F的平面角.依題意可知,ABFC是正方形,∴∠BAF=45°.即二面角B—AD—F的大小為45°;(2)以O為原點,CB、AF、OE所在直線為坐標軸,建立空間直角坐標系(如圖所示),則O(0,0,0),A(0,-3,0),B(3,0,0),D(0,-3,8),E(0,0,8),F(0,3,0),∴=(-3,-3,8),=(0,3,-8).cos〈,〉=

==-.設異面直線BD與EF所成角為,則cos=|cos〈,〉|=.即直線BD與EF所成的角的余弦值為.25.已知雙曲線x2-y23=1,過P(2,1)點作一直線交雙曲線于A、B兩點,并使P為AB的中點,則直線AB的斜率為______.答案:設A(x1,y1)、B(x2,y2),代入雙曲線方程x2-y23=1相減得直線AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故為:626.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).試證:數列{xn}或者對任意自然數n都滿足xn<xn+1,或者對任意自然數n都滿足xn>xn+1.答案:證:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由數列{xn}的定義可知xn>0,(n=1,2,…)所以,xn+1-xn與1-xn2的符號相同.①假定x1<1,我們用數學歸納法證明1-xn2>0(n∈N)顯然,n=1時,1-x12>0設n=k時1-xk2>0,那么當n=k+1時1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,對一切自然數n都有1-xn2>0,從而對一切自然數n都有xn<xn+1②若x1>1,當n=1時,1-x12<0;設n=k時1-xk2<0,那么當n=k+1時1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,對一切自然數n都有1-xn2<0,從而對一切自然數n都有xn>xn+127.經過拋物線y2=2x的焦點且平行于直線3x-2y+5=0的直線的方程是()

A.6x-4y-3=0

B.3x-2y-3=0

C.2x+3y-2=0

D.2x+3y-1=0答案:A28.正方體ABCD-A1B1C1D1的棱長為1,點M是棱AB的中點,點P是平面ABCD上的一動點,且點P到直線A1D1的距離兩倍的平方比到點M的距離的平方大4,則點P的軌跡為()A.圓B.橢圓C.雙曲線D.拋物線答案:在平面ABCD上,以AD為x軸,以AB為y軸建立平面直角坐標系,則M(,12,0),設P(x,y)則|MP|2=y2+(x-12)2點P到直線A1D1的距離為x2+1由題意得4(x2+1)=

y2+(x-12)2+4即3(x+12)2-y2=74選C29.已知一個四棱錐的三視圖如圖所示,則該四棱錐的體積是______.答案:因為三視圖復原的幾何體是正四棱錐,底面邊長為2,高為1,所以四棱錐的體積為13×2×2×1=43.故為:43.30.已知函數f(x)對其定義域內任意兩個實數a,b,當a<b時,都有f(a)<f(b).試用反證法證明:函數f(x)的圖象與x軸至多有一個交點.答案:證明:假設函數f(x)的圖象與x軸至少有兩個交點,…(2分)(1)若f(x)的圖象與x軸有兩個交點,不妨設兩個交點的橫坐標分別為x1,x2,且x1<x2,…(5分)由已知,函數f(x)對其定義域內任意實數x1,x2,當x1<x2時,有f(x1)<f(x2).…(7分)又根據假設,x1,x2是函數f(x)的兩個零點,所以,f(x1)=f(x2)=0,…(9分)這與f(x1)<f(x2)矛盾,…(10分)所以,函數f(x)的圖象不可能與x軸有兩個交點.…(11分)(2)若f(x)的圖象與x軸交點多于兩個,可同理推出矛盾,…(12分)所以,函數f(x)的圖象不可能與x軸有兩個以上交點.綜上,函數f(x)的圖象與x軸至多有一個交點…(14分)31.在極坐標系(ρ,θ)(0≤θ<2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點的極坐標為

______.答案:兩條曲線的普通方程分別為x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得點(-1,1),極坐標為(2,3π4).故填:(2,3π4).32.若隨機向一個半徑為1的圓內丟一粒豆子(假設該豆子一定落在圓內),則豆子落在此圓內接正三角形內的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內接正三角形的邊長為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內的概率P=334π=334π故為:334π33.已知回歸直線的斜率的估計值是1.23,樣本中心點為(4,5),若解釋變量的值為10,則預報變量的值約為()A.16.3B.17.3C.12.38D.2.03答案:設回歸方程為y=1.23x+b,∵樣本中心點為(4,5),∴5=4.92+b∴b=0.08∴y=1.23x+0.08x=10時,y=12.38故選C.34.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因為向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.35.在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()

A.若K2的觀測值為k=6.635,而p(K2≥6.635)=0.010,故我們有99%的把握認為吸煙與患肺病有關系,那么在100個吸煙的人中必有99人患有肺病

B.從獨立性檢驗可知有99%的把握認為吸煙與患肺病有關系時,我們說某人吸煙,那么他有99%的可能患有肺病

C.若從統(tǒng)計量中求出有95%的把握認為吸煙與患肺病有關系,是指有5%的可能性使得推判出現錯誤

D.以上三種說法都不正確答案:C36.已知數列{an}前n項的和為Sn,且滿足an=n2

(n∈N*).

(Ⅰ)求s1、s2、s3的值;

(Ⅱ)用數學歸納法證明sn=n(n+1)(2n+1)6

(n∈N*).答案:(Ⅰ)∵an=n2,n∈N*∴s1=a1=1,s2=a1+a2=1+4=5,s3=a1+a2+a3=1+4+9=14.…(6分)(Ⅱ)證明:(1)當n=1時,左邊=s1=1,右邊=1×(1+1)(2+1)6=1,所以等式成立.…(8分)(2)假設n=k(k∈N*)時結論成立,即Sk=k(k+1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論