版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在內有且只有一個零點,則a的值為()A.3 B.-3 C.2 D.-22.從拋物線上一點(點在軸上方)引拋物線準線的垂線,垂足為,且,設拋物線的焦點為,則直線的斜率為()A. B. C. D.3.復數(shù)的虛部為()A. B. C.2 D.4.復數(shù)的共軛復數(shù)為()A. B. C. D.5.如圖,中,點D在BC上,,將沿AD旋轉得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關系是()A. B.C.,兩種情況都存在 D.存在某一位置使得6.已知向量,,設函數(shù),則下列關于函數(shù)的性質的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數(shù)7.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.8.已知函數(shù),則()A.函數(shù)在上單調遞增 B.函數(shù)在上單調遞減C.函數(shù)圖像關于對稱 D.函數(shù)圖像關于對稱9.在中,內角A,B,C所對的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.1610.已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為()A. B.40 C.16 D.11.已知函數(shù),為的零點,為圖象的對稱軸,且在區(qū)間上單調,則的最大值是()A. B. C. D.12.設正項等差數(shù)列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.36二、填空題:本題共4小題,每小題5分,共20分。13.若實數(shù)滿足不等式組,則的最小值是___14.點到直線的距離為________15.設,滿足約束條件,若的最大值是10,則________.16.在矩形中,,為的中點,將和分別沿,翻折,使點與重合于點.若,則三棱錐的外接球的表面積為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,橢圓的左、右焦點分別為,點在橢圓上且軸,直線交軸于點,,橢圓的離心率為.(1)求橢圓的方程;(2)過的直線交橢圓于兩點,且滿足,求的面積.18.(12分)某商場為改進服務質量,隨機抽取了200名進場購物的顧客進行問卷調查.調查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:滿意不滿意男4040女8040(1)是否有97.5%的把握認為顧客購物體驗的滿意度與性別有關?(2)為答謝顧客,該商場對某款價格為100元/件的商品開展促銷活動.據(jù)統(tǒng)計,在此期間顧客購買該商品的支付情況如下:支付方式現(xiàn)金支付購物卡支付APP支付頻率10%30%60%優(yōu)惠方式按9折支付按8折支付其中有1/3的顧客按4折支付,1/2的顧客按6折支付,1/6的顧客按8折支付將上述頻率作為相應事件發(fā)生的概率,記某顧客購買一件該促銷商品所支付的金額為,求的分布列和數(shù)學期望.附表及公式:.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819.(12分)在極坐標系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標,直線的參數(shù)方程為(為參數(shù)),與交于,兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)設點;若、、成等比數(shù)列,求的值20.(12分)如圖,已知,分別是正方形邊,的中點,與交于點,,都垂直于平面,且,,是線段上一動點.(1)當平面,求的值;(2)當是中點時,求四面體的體積.21.(12分)已知,分別是橢圓:的左,右焦點,點在橢圓上,且拋物線的焦點是橢圓的一個焦點.(1)求,的值:(2)過點作不與軸重合的直線,設與圓相交于A,B兩點,且與橢圓相交于C,D兩點,當時,求△的面積.22.(10分)有最大值,且最大值大于.(1)求的取值范圍;(2)當時,有兩個零點,證明:.(參考數(shù)據(jù):)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
求出,對分類討論,求出單調區(qū)間和極值點,結合三次函數(shù)的圖像特征,即可求解.【詳解】,若,,在單調遞增,且,在不存在零點;若,,在內有且只有一個零點,.故選:A.【點睛】本題考查函數(shù)的零點、導數(shù)的應用,考查分類討論思想,熟練掌握函數(shù)圖像和性質是解題的關鍵,屬于中檔題.2.A【解析】
根據(jù)拋物線的性質求出點坐標和焦點坐標,進而求出點的坐標,代入斜率公式即可求解.【詳解】設點的坐標為,由題意知,焦點,準線方程,所以,解得,把點代入拋物線方程可得,,因為,所以,所以點坐標為,代入斜率公式可得,.故選:A【點睛】本題考查拋物線的性質,考查運算求解能力;屬于基礎題.3.D【解析】
根據(jù)復數(shù)的除法運算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點睛】本題考查復數(shù)的除法運算和復數(shù)的概念.4.D【解析】
直接相乘,得,由共軛復數(shù)的性質即可得結果【詳解】∵∴其共軛復數(shù)為.故選:D【點睛】熟悉復數(shù)的四則運算以及共軛復數(shù)的性質.5.A【解析】
根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,.設,則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點睛】本題考查空間直線與平面所成的角的大小關系,考查三角函數(shù)的圖象和性質,意在考查學生對這些知識的理解掌握水平.6.D【解析】
當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數(shù).本題選擇D選項.7.D【解析】
設,在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應用,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.8.C【解析】
依題意可得,即函數(shù)圖像關于對稱,再求出函數(shù)的導函數(shù),即可判斷函數(shù)的單調性;【詳解】解:由,,所以函數(shù)圖像關于對稱,又,在上不單調.故正確的只有C,故選:C【點睛】本題考查函數(shù)的對稱性的判定,利用導數(shù)判斷函數(shù)的單調性,屬于基礎題.9.C【解析】
根據(jù)正弦定理邊化角以及三角函數(shù)公式可得,再根據(jù)面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點睛】本題主要考查了解三角形中正余弦定理與面積公式的運用,屬于中檔題.10.D【解析】
如圖所示,過分別作于,于,利用和,聯(lián)立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據(jù)得到:,即,根據(jù)得到:,即,解得,,故.故選:.【點睛】本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉化能力.11.B【解析】
由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗的這個值滿足條件.【詳解】解:函數(shù),,為的零點,為圖象的對稱軸,,且,、,,即為奇數(shù)①.在,單調,,②.由①②可得的最大值為1.當時,由為圖象的對稱軸,可得,,故有,,滿足為的零點,同時也滿足滿足在上單調,故為的最大值,故選:B.【點睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對稱性,屬于中檔題.12.B【解析】
方法一:由題意得,根據(jù)等差數(shù)列的性質,得成等差數(shù)列,設,則,,則,當且僅當時等號成立,從而的最小值為16,故選B.方法二:設正項等差數(shù)列的公差為d,由等差數(shù)列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B.二、填空題:本題共4小題,每小題5分,共20分。13.-1【解析】作出可行域,如圖:由得,由圖可知當直線經(jīng)過A點時目標函數(shù)取得最小值,A(1,0)所以-1故答案為-114.2【解析】
直接根據(jù)點到直線的距離公式即可求出?!驹斀狻恳罁?jù)點到直線的距離公式,點到直線的距離為?!军c睛】本題主要考查點到直線的距離公式的應用。15.【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結合即可容易求得結果.【詳解】畫出不等式組表示的平面區(qū)域如下所示:目標函數(shù)可轉化為與直線平行,數(shù)形結合可知當且僅當目標函數(shù)過點,取得最大值,故可得,解得.故答案為:.【點睛】本題考查由目標函數(shù)的最值求參數(shù)值,屬基礎題.16..【解析】
計算外接圓的半徑,并假設外接球的半徑為R,可得球心在過外接圓圓心且垂直圓面的垂線上,然后根據(jù)面,即可得解.【詳解】由題意可知,,所以可得面,設外接圓的半徑為,由正弦定理可得,即,,設三棱錐外接球的半徑,因為外接球的球心為過底面圓心垂直于底面的直線與中截面的交點,則,所以外接球的表面積為.故答案為:.【點睛】本題考查三棱錐的外接球的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)根據(jù)離心率以及,即可列方程求得,則問題得解;(2)設直線方程為,聯(lián)立橢圓方程,結合韋達定理,根據(jù)題意中轉化出的,即可求得參數(shù),則三角形面積得解.【詳解】(1)設,由題意可得.因為是的中位線,且,所以,即,因為進而得,所以橢圓方程為(2)由已知得兩邊平方整理可得.當直線斜率為時,顯然不成立.直線斜率不為時,設直線的方程為,聯(lián)立消去,得,所以,由得將代入整理得,展開得,整理得,所以.即為所求.【點睛】本題考查由離心率求橢圓的方程,以及橢圓三角形面積的求解,屬綜合中檔題.18.(1)有97.5%的把握認為顧客購物體驗的滿意度與性別有關;(2)67元,見解析.【解析】
(1)根據(jù)表格數(shù)據(jù)代入公式,結合臨界值即得解;(2)的可能取值為40,60,80,1,根據(jù)題意依次計算概率,列出分布列,求數(shù)學期望即可.【詳解】(1)由題得,所以,有97.5%的把握認為顧客購物體驗的滿意度與性別有關.(2)由題意可知的可能取值為40,60,80,1.,,,.則的分布列為4060801所以,(元).【點睛】本題考查了統(tǒng)計和概率綜合,考查了列聯(lián)表,隨機變量的分布列和數(shù)學期望等知識點,考查了學生數(shù)據(jù)處理,綜合分析,數(shù)學運算的能力,屬于中檔題.19.(1)曲線的直角坐標方程為,直線的普通方程為;(2)【解析】
(1)由極坐標與直角坐標的互化公式和參數(shù)方程與普通方程的互化,即可求解曲線的直角坐標方程和直線的普通方程;(2)把的參數(shù)方程代入拋物線方程中,利用韋達定理得,,可得到,根據(jù)因為,,成等比數(shù)列,列出方程,即可求解.【詳解】(1)由題意,曲線的極坐標方程可化為,又由,可得曲線的直角坐標方程為,由直線的參數(shù)方程為(為參數(shù)),消去參數(shù),得,即直線的普通方程為;(2)把的參數(shù)方程代入拋物線方程中,得,由,設方程的兩根分別為,,則,,可得,.所以,,.因為,,成等比數(shù)列,所以,即,則,解得解得或(舍),所以實數(shù).【點睛】本題主要考查了極坐標方程與直角坐標方程,以及參數(shù)方程與普通方程的互化,以及直線參數(shù)方程的應用,其中解答中熟記互化公式,合理應用直線的參數(shù)方程中參數(shù)的幾何意義是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.20.(1).(2)【解析】
(1)利用線面垂直的性質得出,進而得出,利用相似三角形的性質,得出,從而得出的值;(2)利用線面垂直的判定定理得出平面,進而得出四面體的體積,計算出,,即可得出四面體的體積.【詳解】(1)因為平面,平面,所以又因為,都垂直于平面,所以又,分別是正方形邊,的中點,且,所以.(2)因為,分別是正方形邊,的中點,所以又因為,都垂直于平面,平面,所以因為平面,所以平面所以,四面體的體積,所以.【點睛】本題主要考查了線面垂直的性質定理的應用,以及求棱錐的體積,屬于中檔題.21.(1);(2).【解析】
(1)由已知根據(jù)拋物線和橢圓的定義和性質,可求出,;(2)設直線方程為,聯(lián)立直線與圓的方程可以求出,再聯(lián)立直線和橢圓的方程化簡,由根與系數(shù)的關系得到結論,繼而求出面積.【詳解】(1)焦點為F(1,0),則F1(1,0),F(xiàn)2(1,0),,解得,=1,=1,(Ⅱ)由已知,可設直線方程為,,聯(lián)立得,易知△>0,則===因為,所以=1,解得聯(lián)立,得,△=8>0設,則【點睛】本題主要考查拋物線和橢圓的定義與性質應用,同時考查利用根與系數(shù)的關系,解決直線與圓,直線與橢圓的位置關系問題.意在考查學生的數(shù)學運算能力.22.(1);(2)證明見解析.【解析】
(1)求出函數(shù)的定義域為,,分和兩種情況討論,分析函數(shù)的單調性,求出函數(shù)的最大值,即可得出關于實數(shù)的不等式,進而可求得實數(shù)的取值范圍;(2)利用導數(shù)分析出函數(shù)在上遞增,在上遞減,可得出,由,構造函數(shù),證明出,進而得出,再由函數(shù)在區(qū)間上的單調性可證得結論.【詳解】(1)函數(shù)的定義域為,且.當時,對任意的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【《LKJ2000型列車監(jiān)控記錄裝置的操作規(guī)程及故障處理探究》10000字(論文)】
- 2024年大客戶渠道銷售的工作職責描述(四篇)
- 懷舊店鋪創(chuàng)業(yè)計劃書(5篇)
- 2024年小學教師學期工作計劃范文(三篇)
- 2024年幼兒園學期計劃范文(五篇)
- 2024年工程質量目標管理制度范例(二篇)
- 2024年可燃及易燃易爆危險品管理制度范文(七篇)
- 2024年合租房單間臥室出租合同樣本(二篇)
- 2024年明膠空心膠囊項目投資申請報告
- 2024年卷煙銷貨款管理制度(二篇)
- 變壓器臺架安裝施工方案全套完整
- 計量單位明細表
- 三段七步讀寫整合教學模式
- 大學與中小學合作研究:經(jīng)驗、問題與思考
- 三打白骨精話劇劇本
- 人教新目標英語八年級上冊Unit7重點短語和句子歸納總結
- 土地復墾工程施工的重點和難點及保證措施(完整版)
- 淺析民辦非企業(yè)單位發(fā)展的現(xiàn)狀、問題及對策
- 鍋爐APC先進過程優(yōu)化控制解決方案
- 【公開課】閩教五年級上 冊Unit7 Part A
- 小班兒歌《晚上》(經(jīng)典實用)
評論
0/150
提交評論