2023年貴州經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年貴州經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年貴州經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年貴州經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年貴州經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩41頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年貴州經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.已知點(diǎn)A(-3,0),B(3,0),動(dòng)點(diǎn)C到A、B兩點(diǎn)的距離之差的絕對(duì)值為2,點(diǎn)C的軌跡與直線(xiàn)

y=x-2交于D、E兩點(diǎn),求線(xiàn)段DE的中點(diǎn)坐標(biāo)及其弦長(zhǎng)DE.答案:∵|CB|-|CA|=2<23=|AB|,∴點(diǎn)C的軌跡是以A、B為焦點(diǎn)的雙曲線(xiàn),2a=2,2c=23,∴a=1,c=3,∴b=2,∴點(diǎn)C的軌跡方程為x2-y22=1.把直線(xiàn)

y=x-2代入x2-y22=1化簡(jiǎn)可得x2+4x-6=0,△=16-4(-6)=40>0,設(shè)D、E兩點(diǎn)的坐標(biāo)分別為(x1,y1

)、(x2,y2),∴x1+x2=-4,x1?x2=-6.∴線(xiàn)段DE的中點(diǎn)坐標(biāo)為M(-2,4),DE=1+1?|x1-x2|=2?(x1

+x2)2-4x1

?x2

=216-4(-6)=45.2.有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:

[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18

[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3

根據(jù)樣本的頻率分布估計(jì),大于或等于31.5的數(shù)據(jù)約占()A.211B.13C.12D.23答案:根據(jù)所給的數(shù)據(jù)的分組和各組的頻數(shù)知道,大于或等于31.5的數(shù)據(jù)有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本組數(shù)據(jù)共有66個(gè),∴大于或等于31.5的數(shù)據(jù)約占2266=13,故選B3.如圖,PA,PB切⊙O于

A,B兩點(diǎn),AC⊥PB,且與⊙O相交于

D,若∠DBC=22°,則∠APB═______.答案:連接AB根據(jù)弦切角有∠DBC=∠DAB=22°

∠PAC=∠DBA因?yàn)榇怪薄螪CB=90°根據(jù)外角∠ADB=∠DBC+∠DCB=112°

∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°4.袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個(gè),現(xiàn)從袋中任意取出3個(gè)小球,假設(shè)每個(gè)小球被取出的可能性都相等.

(Ⅰ)求取出的3個(gè)小球上的數(shù)字分別為1,2,3的概率;

(Ⅱ)求取出的3個(gè)小球上的數(shù)字恰有2個(gè)相同的概率;

(Ⅲ)用X表示取出的3個(gè)小球上的最大數(shù)字,求P(X≥4)的值.答案:(I)記“取出的3個(gè)小球上的數(shù)字分別為1,2,3”的事件記為A,則P(A)=C12C12C12C310=8120=115;(Ⅱ)記“取出的3個(gè)小球上的數(shù)字恰有2個(gè)相同”的事件記為A,則P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3個(gè)小球上的最大數(shù)字,則X≥4包含取出的3個(gè)小球上的最大數(shù)字為4或5兩種情況,當(dāng)取出的3個(gè)小球上的最大數(shù)字為4時(shí),P(X=4)=C12C26+C22C16C310=36120=310;當(dāng)取出的3個(gè)小球上的最大數(shù)字為5時(shí),P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.5.如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長(zhǎng)線(xiàn)上一點(diǎn),AE⊥DC交DC的延長(zhǎng)線(xiàn)于點(diǎn)E,且AC平分∠EAB.

(1)求證:DE是⊙O的切線(xiàn);

(2)若AB=6,AE=245,求BD和BC的長(zhǎng).答案:(1)證明:連接OC∵AC平分∠EAB∴∠EAC=∠BAC又在圓中OA=OC∴∠AC0=∠BAC∴∠EAC=∠ACO∴OC∥AE(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行)則由AE⊥DC知OC⊥DC即DE是⊙O的切線(xiàn).(2)∵∠D=∠D,∠E=∠OCD=90°∴△DCO∽△DEA∴BD=2∵Rt△EAC∽R(shí)t△CAB.∴AC2=1445由勾股定理得BC=655.6.在語(yǔ)句PRINT

3,3+2的結(jié)果是()

A.3,3+2

B.3,5

C.3,5

D.3,2+3答案:B7.已知曲線(xiàn)x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)上一點(diǎn)P,原點(diǎn)為0,直線(xiàn)P0的傾斜角為π4,則P點(diǎn)的坐標(biāo)是______.答案:根據(jù)題意,曲線(xiàn)x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)消去參數(shù)化成普通方程,得x29+y216=1(y≥0)∵直線(xiàn)P0的傾斜角為π4,∴P點(diǎn)在直線(xiàn)y=x上,將其代入橢圓方程得x29+x216=1,解之得x=y=125(舍負(fù)),因此點(diǎn)P的坐標(biāo)為(125,125)故為:(125,125)8.將(x+y+z)5展開(kāi)合并同類(lèi)項(xiàng)后共有______項(xiàng),其中x3yz項(xiàng)的系數(shù)是______.答案:將(x+y+z)5展開(kāi)合并同類(lèi)項(xiàng)后,每一項(xiàng)都是m?xa?yb?zc

的形式,且a+b+c=5,其中,m是實(shí)數(shù),a、b、c∈N,構(gòu)造8個(gè)完全一樣的小球模型,分成3組,每組至少一個(gè),共有分法C27種,每一組中都去掉一個(gè)小球的數(shù)目分別作為(x+y+z)5的展開(kāi)式中每一項(xiàng)中x,y,z各字母的次數(shù),小球分組模型與各項(xiàng)的次數(shù)是一一對(duì)應(yīng)的.故將(x+y+z)5展開(kāi)合并同類(lèi)項(xiàng)后共有C27=21項(xiàng).把(x+y+z)5的展開(kāi)式看成5個(gè)因式(x+y+z)的乘積形式.從中任意選3個(gè)因式,這3個(gè)因式都取x,另外的2個(gè)因式分別取y、z,相乘即得含x3yz項(xiàng),故含x3yz項(xiàng)的系數(shù)為C35=20,故為21;20.9.設(shè)復(fù)數(shù)z滿(mǎn)足條件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可設(shè)z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故為410.在空間直角坐標(biāo)系0xyz中有兩點(diǎn)A(2,5,1)和B(2,4,-1),則|AB|=______.答案:∵點(diǎn)A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故為5.11.若矩陣滿(mǎn)足下列條件:①每行中的四個(gè)數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個(gè)數(shù)為()

A.24

B.48

C.144

D.288答案:C12.如圖所示,設(shè)k1,k2,k3分別是直線(xiàn)l1,l2,l3的斜率,則()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:C13.直線(xiàn)y=2x與直線(xiàn)x+y=3的交點(diǎn)坐標(biāo)是

______.答案:聯(lián)立兩直線(xiàn)方程得y=2xx+y=3,解得x=1y=2所以直線(xiàn)y=2x與直線(xiàn)x+y=3的交點(diǎn)坐標(biāo)是(1,2)故為(1,2).14.拋物線(xiàn)y=4x2的焦點(diǎn)坐標(biāo)是()

A.(0,1)

B.(0,)

C.(1,0)

D.(,0)答案:B15.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是

______.答案:∵“a,b都是奇數(shù)”的否命題是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否命題是“a+b不是偶數(shù)”,∴命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故為:若a+b不是偶數(shù),則a,b不都是奇數(shù).16.(幾何證明選講選做題)已知AD是△ABC的外角∠EAC的平分線(xiàn),交BC的延長(zhǎng)線(xiàn)于點(diǎn)D,延長(zhǎng)DA交△ABC的外接圓于點(diǎn)F,連接FB,F(xiàn)C.

(1)求證:FB=FC;

(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=33,求AD的長(zhǎng).答案:(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四邊形AFBC內(nèi)接于圓,∴∠DAC=∠FBC;

…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圓的直徑,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6

…10′17.在空間直角坐標(biāo)系中,點(diǎn)(-2,1,4)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為()

A.(-2,1,-4)

B.(-2,-1,-4)

C.(2,1,-4)

D.(2,-1,4)答案:B18.已知有如下兩段程序:

問(wèn):程序1運(yùn)行的結(jié)果為_(kāi)_____.程序2運(yùn)行的結(jié)果為_(kāi)_____.

答案:程序1是計(jì)數(shù)變量i=21開(kāi)始,不滿(mǎn)足i≤20,終止循環(huán),累加變量sum=0,這個(gè)程序計(jì)算的結(jié)果:sum=0;程序2計(jì)數(shù)變量i=21,開(kāi)始進(jìn)入循環(huán),sum=0+21=22,其值大于20,循環(huán)終止,累加變量sum從0開(kāi)始,這個(gè)程序計(jì)算的是sum=21.故為:0;21.19.如圖是用來(lái)求2+32+43+54+…+101100的計(jì)算程序,請(qǐng)補(bǔ)充完整:______.

答案:2+32+43+54+…+101100=(1+1)+(1+12)+(1+13)+…+(1+1100)故循環(huán)體中應(yīng)是S=S+(1+1i)故為:S=S+(1+1i)20.從拋物線(xiàn)y2=4x上一點(diǎn)P引拋物線(xiàn)準(zhǔn)線(xiàn)的垂線(xiàn),垂足為M,且|PM|=5,設(shè)拋物線(xiàn)的焦點(diǎn)為F,則△MPF的面積為()

A.6

B.8

C.10

D.15答案:C21.已知一直線(xiàn)斜率為3,且過(guò)A(3,4),B(x,7)兩點(diǎn),則x的值為()

A.4

B.12

C.-6

D.3答案:A22.已知矩陣A=abcd,若矩陣A屬于特征值3的一個(gè)特征向量為α1=11,屬于特征值-1的一個(gè)特征向量為α2=1-1,則矩陣A=______.答案:由矩陣A屬于特征值3的一個(gè)特征向量為α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩陣A屬于特征值2的一個(gè)特征向量為α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩陣A=1221.(10分)故為:1221.23.已知三點(diǎn)A(1,2),B(2,-1),C(2,2),E,F(xiàn)為線(xiàn)段BC的三等分點(diǎn),則AE?AF=______.答案:∵A(1,2),B(2,-1),C(2,2),∴AB=(1,-3),BC=(0,3),AE=AB+13BC=(1,-2),AF=AB+23BC=(1,-1),∴AE?AF=1×1+(-2)×(-1)=3.故為:324.給出下列結(jié)論:

(1)兩個(gè)變量之間的關(guān)系一定是確定的關(guān)系;

(2)相關(guān)關(guān)系就是函數(shù)關(guān)系;

(3)回歸分析是對(duì)具有函數(shù)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法;

(4)回歸分析是對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法.

以上結(jié)論中,正確的有幾個(gè)?()

A.1

B.2

C.3

D.4答案:A25.設(shè)i為虛數(shù)單位,若(x+i)(1-i)=y,則實(shí)數(shù)x,y滿(mǎn)足()

A.x=-1,y=1

B.x=-1,y=2

C.x=1,y=2

D.x=1,y=1答案:C26.若p、q是兩個(gè)簡(jiǎn)單命題,且“p或q”的否定形式是真命題,則()

A.p真q真

B.p真q假

C.p假q真

D.p假q假答案:D27.(選做題)某制藥企業(yè)為了對(duì)某種藥用液體進(jìn)行生物測(cè)定,需要優(yōu)選培養(yǎng)溫度,實(shí)驗(yàn)范圍定為29℃~63℃,精確度要求±1℃,用分?jǐn)?shù)法進(jìn)行優(yōu)選時(shí),能保證找到最佳培養(yǎng)溫度需要最少實(shí)驗(yàn)次數(shù)為(

)。答案:728.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共線(xiàn),向量c=2e1-9e2.問(wèn)是否存在這樣的實(shí)數(shù)λ、μ,使向量d=λa+μb與c共線(xiàn)?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d與c共線(xiàn),則存在實(shí)數(shù)k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在這樣的實(shí)數(shù)λ、μ,只要λ=-2μ,就能使d與c共線(xiàn).29.等于()

A.

B.

C.

D.答案:B30.已知隨機(jī)變量ξ~N(3,22),若ξ=2η+3,則Dη=()

A.0

B.1

C.2

D.4答案:B31.已知直角三角形兩直角邊長(zhǎng)為a,b,求斜邊長(zhǎng)c的一個(gè)算法分下列三步:

①計(jì)算c=a2+b2;

②輸入直角三角形兩直角邊長(zhǎng)a,b的值;

③輸出斜邊長(zhǎng)c的值;

其中正確的順序是()A.①②③B.②③①C.①③②D.②①③答案:由算法規(guī)則得:第一步:輸入直角三角形兩直角邊長(zhǎng)a,b的值,第二步:計(jì)算c=a2+b2,第三步:輸出斜邊長(zhǎng)c的值;這樣一來(lái),就是斜邊長(zhǎng)c的一個(gè)算法.故選D.32.已知x、y的取值如下表所示:

x0134y2.24.34.86.7若從散點(diǎn)圖分析,y與x線(xiàn)性相關(guān),且

y=0.95x+

a,則

a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴這組數(shù)據(jù)的樣本中心點(diǎn)是(2,4.5)∵y與x線(xiàn)性相關(guān),且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故選A.33.已知a>0,b>0,直線(xiàn)l與x軸、y軸分別交于A(a,0),B(0,b),且過(guò)點(diǎn)(1,2),O為原點(diǎn).求△OAB面積的最小值.答案:∵a>0,b>0,直線(xiàn)l與x軸、y軸分別交于A(a,0),B(0,b),∴直線(xiàn)l的方程為xa+yb=1,又直線(xiàn)l過(guò)點(diǎn)(1,2),∴1a+2b=1,由基本不等式得1≥22ab,∴ab≥8,△OAB面積為:12ab≥12×8=4,當(dāng)且僅當(dāng)1a=2b=12,即a=2且b=4時(shí),等號(hào)成立.故△OAB面積的最小值是4.34.規(guī)定運(yùn)算.abcd.=ad-bc,則.1i-i2.=______.答案:根據(jù)題目的新規(guī)定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故為:1.35.對(duì)于空間中的三個(gè)向量,

,

,它們一定是()

A.共面向量

B.共線(xiàn)向量

C.不共面向量

D.以上均不對(duì)答案:A36.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數(shù),則方程沒(méi)有整數(shù)根”正確的假設(shè)是方程存在實(shí)數(shù)根x0為()

A.整數(shù)

B.奇數(shù)或偶數(shù)

C.正整數(shù)或負(fù)整數(shù)

D.自然數(shù)或負(fù)整數(shù)答案:A37.一個(gè)正三棱錐的底面邊長(zhǎng)等于一個(gè)球的半徑,該正三棱錐的高等于這個(gè)球的直徑,則球的體積與正三棱錐體積的比值為()

A.

B.

C.

D.答案:A38.設(shè)F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點(diǎn),P是第一象限內(nèi)該橢圓上的一點(diǎn),且P、F1、F2三點(diǎn)構(gòu)成一直角三角形,則點(diǎn)P的縱坐標(biāo)為_(kāi)_____.答案:由題意,P是第一象限內(nèi)該橢圓上的一點(diǎn),且P、F1、F2三點(diǎn)構(gòu)成一直角三角形,故可分為兩類(lèi):①當(dāng)∠P為直角時(shí),設(shè)P的縱坐標(biāo)為y,則F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點(diǎn)∴|PF1|+|PF2|=4,|F1F2|=23∵∠P為直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②當(dāng)∠PF2F1為直角時(shí),P的橫坐標(biāo)為3設(shè)P的縱坐標(biāo)為y(y>0),則(3)24+y2=1,∴y=12故為:33

或1239.設(shè)A、B、C、D是半徑為r的球面上的四點(diǎn),且滿(mǎn)足AB⊥AC、AD⊥AC、AB⊥AD,則S△ABC+S△ABD+S△ACD的最大值是[

]A、r2

B、2r2

C、3r2

D、4r2答案:B40.不等式|x-2|+|x+1|<5的解集為()

A.(-∞,-2)∪(3,+∞)

B.(-∞,-1)∪(2,+∞)

C.(-2,3)

D.(-∞,+∞)答案:C41.從單詞“equation”選取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排列共有()A.120個(gè)B.480個(gè)C.720個(gè)D.840個(gè)答案:要選取5個(gè)字母時(shí)首先從其它6個(gè)字母中選3個(gè)有C63種結(jié)果,再與“qu“組成的一個(gè)元素進(jìn)行全排列共有C63A44=480,故選B.42.i為虛數(shù)單位,復(fù)數(shù)z=i(1-i),則.z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵復(fù)數(shù)z=i(1-i)=1+i,則.z=1-i,它在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(1,-1),故.z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限,故選D.43.把一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,則點(diǎn)(a,b)在直線(xiàn)x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,滿(mǎn)足條件的事件是點(diǎn)(a,b)在直線(xiàn)x+y=5左下方即a+b<5,可以列舉出所有滿(mǎn)足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結(jié)果,∴點(diǎn)在直線(xiàn)的下方的概率是636=16故選A.44.如果輸入2,那么執(zhí)行圖中算法的結(jié)果是()A.輸出2B.輸出3C.輸出4D.程序出錯(cuò),輸不出任何結(jié)果答案:第一步:輸入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:輸出4故為C.45.某公司為慶祝元旦舉辦了一個(gè)抽獎(jiǎng)活動(dòng),現(xiàn)場(chǎng)準(zhǔn)備的抽獎(jiǎng)箱里放置了分別標(biāo)有數(shù)字1000、800﹑600、0的四個(gè)球(球的大小相同).參與者隨機(jī)從抽獎(jiǎng)箱里摸取一球(取后即放回),公司即贈(zèng)送與此球上所標(biāo)數(shù)字等額的獎(jiǎng)金(元),并規(guī)定摸到標(biāo)有數(shù)字0的球時(shí)可以再摸一次﹐但是所得獎(jiǎng)金減半(若再摸到標(biāo)有數(shù)字0的球就沒(méi)有第三次摸球機(jī)會(huì)),求一個(gè)參與抽獎(jiǎng)活動(dòng)的人可得獎(jiǎng)金的期望值是多少元.答案:設(shè)ξ表示摸球后所得的獎(jiǎng)金數(shù),由于參與者摸取的球上標(biāo)有數(shù)字1000,800,600,0,當(dāng)摸到球上標(biāo)有數(shù)字0時(shí),可以再摸一次,但獎(jiǎng)金數(shù)減半,即分別為500,400,300,0.則ξ的所有可能取值為1000,800,600,500,400,300,0.依題意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,則ξ的分布列為∴所求期望值為Eξ=14(1000+800+600)+116(500+400+300+0)=675元.46.已知x與y之間的一組數(shù)據(jù):

x

0

1

2

3

y

2

4

6

8

則y與x的線(xiàn)性回歸方程為y=bx+a必過(guò)點(diǎn)()

A.(1.5,4)

B.(1.5,5)

C.(1,5)

D.(2,5)答案:B47.以數(shù)集A={a,b,c,d}中的四個(gè)元素為邊長(zhǎng)的四邊形只能是()A.平行四邊形B.矩形C.菱形D.梯形答案:∵數(shù)集A={a,b,c,d}中的四個(gè)元素互不相同,∴以數(shù)集A={a,b,c,d}中的四個(gè)元素為邊長(zhǎng)的四邊形,四條邊不相等∴四邊形只可能是梯形故選D.48.已知a=(1,0),b=(m,m)(m>0),則<a,b>=______.答案:∵b=(m,m)(m>0),∴b與第一象限的角平分線(xiàn)同向,且由原點(diǎn)指向遠(yuǎn)處,而a=(1,0)同橫軸的正方向同向,∴<a,b>=45°,故為:45°49.一個(gè)完整的程序框圖至少應(yīng)該包含______.答案:完整程序框圖必須有起止框,用來(lái)表示程序的開(kāi)始和結(jié)束,還要包括處理框,用來(lái)處理程序的執(zhí)行.故為:起止框、處理框.50.對(duì)于實(shí)數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為_(kāi)_____.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.第2卷一.綜合題(共50題)1.有50件產(chǎn)品編號(hào)從1到50,現(xiàn)在從中抽取抽取5件檢驗(yàn),用系統(tǒng)抽樣確定所抽取的編號(hào)為()

A.5,10,15,20,25

B.5,15,20,35,40

C.5,11,17,23,29

D.10,20,30,40,50答案:D2.已知點(diǎn)P1的球坐標(biāo)是P1(4,,),P2的柱坐標(biāo)是P2(2,,1),則|P1P2|=()

A.

B.

C.

D.4答案:A3.是x1,x2,…,x100的平均數(shù),a是x1,x2,…,x40的平均數(shù),b是x41,x42,…,x100的平均數(shù),則下列各式正確的是()

A.=

B=

C.=a+b

D.答案:A4.如圖所示,已知A、B、C三點(diǎn)不共線(xiàn),O為平面ABC外的一點(diǎn),若點(diǎn)M滿(mǎn)足

(1)判斷三個(gè)向量是否共面;

(2)判斷點(diǎn)M是否在平面ABC內(nèi).答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三個(gè)向量的基線(xiàn)又有公共點(diǎn)M,∴M、A、B、C共面,即點(diǎn)M在平面ABC內(nèi),5.下列說(shuō)法正確的是()

A.向量

與向量是共線(xiàn)向量,則A、B、C、D必在同一直線(xiàn)上

B.向量與平行,則與的方向相同或相反

C.向量的長(zhǎng)度與向量的長(zhǎng)度相等

D.單位向量都相等答案:C6.設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線(xiàn)的焦點(diǎn),A是拋物線(xiàn)上一點(diǎn),若·=,則點(diǎn)A的坐標(biāo)是

)A.B.C.D.答案:B解析:略7.已知圓C的極坐標(biāo)方程是ρ=2sinθ,那么該圓的直角坐標(biāo)方程為

______,半徑長(zhǎng)是

______.答案:把極坐標(biāo)方程是ρ=2sinθ的兩邊同時(shí)乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)為圓心,半徑等于1的圓,故為:x2+(y-1)2=1;1.8.與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是______.答案:設(shè)M(x,y)為所求軌跡上任一點(diǎn),則由題意知1+|y|=x2+y2,化簡(jiǎn)得x2=2|y|+1.因此與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是x2=2|y|+1.故為x2=2|y|+1.9.關(guān)于生活中的圓錐曲線(xiàn),有下面幾個(gè)結(jié)論:

(1)標(biāo)準(zhǔn)田徑運(yùn)動(dòng)場(chǎng)的內(nèi)道是一個(gè)橢圓;

(2)接受衛(wèi)星轉(zhuǎn)播的電視信號(hào)的天線(xiàn)設(shè)備,其軸截面與天線(xiàn)設(shè)備的交線(xiàn)是拋物線(xiàn);

(3)大型熱電廠(chǎng)的冷卻通風(fēng)塔,其軸截面與通風(fēng)塔的交線(xiàn)是雙曲線(xiàn);

(4)地球圍繞太陽(yáng)運(yùn)行的軌跡可以近似地看成一個(gè)橢圓.

其中正確命題的序號(hào)是______(把你認(rèn)為正確命題的序號(hào)都填上).答案:(1)標(biāo)準(zhǔn)田徑運(yùn)動(dòng)場(chǎng)的內(nèi)道是有直道和彎道部分是半圓組成,不是橢圓.故錯(cuò)誤(2)接受衛(wèi)星轉(zhuǎn)播的電視信號(hào)的天線(xiàn)設(shè)備,其軸截面與天線(xiàn)設(shè)備的交線(xiàn)是拋物線(xiàn).故正確.(3)大型熱電廠(chǎng)的冷卻通風(fēng)塔,其軸截面與通風(fēng)塔的交線(xiàn)是雙曲線(xiàn).故正確.(4)地球圍繞太陽(yáng)運(yùn)行的軌跡可以近似地看成一個(gè)橢圓.故正確.故為:(2)(3)(4)10.把矩陣變?yōu)楹?,與對(duì)應(yīng)的值是()

A.

B.

C.

D.答案:C11.四名男生三名女生排成一排,若三名女生中有兩名相鄰,但三名女生不能連排,則不同的排法數(shù)有()A.3600B.3200C.3080D.2880答案:由題意知本題需要利用分步計(jì)數(shù)原理來(lái)解,∵三名女生有且僅有兩名相鄰,∴把這兩名女生看做一個(gè)元素,與另外一名女生作為兩個(gè)元素,有C32A22種結(jié)果,把男生排列有A44,把女生在男生所形成的5個(gè)空位中排列有A52種結(jié)果,共有C32A22A44A52=2880種結(jié)果,故選D.12.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長(zhǎng)線(xiàn)上一點(diǎn),連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點(diǎn)共圓∴∠EFC=∠D=α∴∠DEB=α故為:α13.5顆骰子同時(shí)擲出,共擲100次則至少一次出現(xiàn)全為6點(diǎn)的概率為(

)A.B.C.D.答案:C解析:5顆骰子同時(shí)擲出,沒(méi)有全部出現(xiàn)6點(diǎn)的概率是,共擲100次至少一次出現(xiàn)全為6點(diǎn)的概率是.14.抽樣方法有()A.隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣B.隨機(jī)數(shù)法、抽簽法和分層抽樣法C.簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣D.系統(tǒng)抽樣、分層抽樣和隨機(jī)數(shù)法答案:我們常用的抽樣方法有:簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣,而抽簽法和隨機(jī)數(shù)法,只是簡(jiǎn)單隨機(jī)抽樣的兩種不同抽取方法故選C15.甲袋中裝有3個(gè)白球和5個(gè)黑球,乙袋中裝有4個(gè)白球和6個(gè)黑球,現(xiàn)從甲袋中隨機(jī)取出一個(gè)球放入乙袋中,充分混合后,再?gòu)囊掖须S機(jī)取出一個(gè)球放回甲袋中,則甲袋中白球沒(méi)有減少的概率為()A.944B.2544C.3544D.3744答案:白球沒(méi)有減少的情況有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率為58+1588=3544,故選C.16.直線(xiàn)l1過(guò)點(diǎn)P(0,-1),且傾斜角為α=30°.

(I)求直線(xiàn)l1的參數(shù)方程;

(II)若直線(xiàn)l1和直線(xiàn)l2:x+y-2=0交于點(diǎn)Q,求|PQ|.答案:(Ⅰ)直線(xiàn)l1的參數(shù)方程為x=cos30°ty=-1+sin30°t即x=32ty=-1+12t(t為參數(shù))

(Ⅱ)將上式代入x+y-2=0,得32t-1+12t-2=0解得t=3(3-1)根據(jù)t的幾何意義得出|PQ|=|t|=3(3-1)17.(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)

A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.

C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線(xiàn)上一點(diǎn),且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線(xiàn)段CE的長(zhǎng)為_(kāi)_____.答案:A.∵|x-5|+|x+3|≥10,∴當(dāng)x≥5時(shí),x-5+x+3≥10,∴x≥6;當(dāng)x≤-3時(shí),有5-x+(-x-3)≥10,∴x≤-4;當(dāng)-4<x<5時(shí),有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標(biāo)為(-1,0),∴其極坐標(biāo)是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線(xiàn)定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.18.如圖程序輸出的結(jié)果是()

a=3,

b=4,

a=b,

b=a,

PRINTa,b

END

A.3,4

B.4,4

C.3,3

D.4,3答案:B19.已知ABCD是平行四邊形,P點(diǎn)是ABCD所在平面外的一點(diǎn),連接PA、PB、PC、PD.設(shè)點(diǎn)E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.

(1)試用向量方法證明E、F、G、H四點(diǎn)共面;

(2)試判斷平面EFGH與平面ABCD的位置關(guān)系,并用向量方法證明你的判斷.答案:(1)證明略(2)平面EFGH∥平面ABCD解析:(1)

分別延長(zhǎng)PE、PF、PG、PH交對(duì)邊于M、N、Q、R點(diǎn),因?yàn)镋、F、G、H分別是所在三角形的重心,所以M、N、Q、R為所在邊的中點(diǎn),順次連接M、N、Q、R得到的四邊形為平行四邊形,且有=,=,=,

=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四點(diǎn)共面.(2)

由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵M(jìn)N平面ABC,EF平面ABC,EF∥平面ABC.∵EG與EF交于E點(diǎn),∴平面EFGH∥平面ABCD.20.設(shè)=(3,4),=(sinα,cosα),且⊥,則tanα的值為()

A.

B.-

C.

D.-答案:D21.橢圓=1的焦點(diǎn)為F1,點(diǎn)P在橢圓上,如果線(xiàn)段PF1的中點(diǎn)M在y軸上,那么點(diǎn)M的縱坐標(biāo)是()

A.±

B.±

C.±

D.±答案:A22.將兩枚質(zhì)地均勻透明且各面分別標(biāo)有1,2,3,4的正四面體玩具各擲一次,設(shè)事件A={兩個(gè)玩具底面點(diǎn)數(shù)不相同},B={兩個(gè)玩具底面點(diǎn)數(shù)至少出現(xiàn)一個(gè)2點(diǎn)},則P(B|A)=______.答案:設(shè)事件A={兩個(gè)玩具底面點(diǎn)數(shù)不相同},包括以下12個(gè)基本事件:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件B={兩個(gè)玩具底面點(diǎn)數(shù)至少出現(xiàn)一個(gè)2點(diǎn)},則包括以下6個(gè)基本事件:(1,2),(2,1),(2,3),(2,4),(3,2),(4,2).故P(B|A)=612=12.故為12.23.一個(gè)容量為n的樣本,分成若干組,已知某數(shù)的頻數(shù)和頻率分別為40、0.125,則n的值為()A.640B.320C.240D.160答案:由頻數(shù)、頻率和樣本容量之間的關(guān)系得到,40n=0.125,∴n=320.故選B.24.(2x+1)5的展開(kāi)式中的第3項(xiàng)的系數(shù)是()A.10B.40C.80D.120答案:(2x+1)5的展開(kāi)式中的第3項(xiàng)為T(mén)3=C25(2x)3

×1=80x3,故(2x+1)5的展開(kāi)式中的第3項(xiàng)的系數(shù)是80,故選C.25.已知M和N分別是四面體OABC的邊OA,BC的中點(diǎn),且,若=a,=b,=c,則用a,b,c表示為()

A.

B.

C.

D.

答案:B26.在參數(shù)方程所表示的曲線(xiàn)上有B、C兩點(diǎn),它們對(duì)應(yīng)的參數(shù)值分別為t1、t2,則線(xiàn)段BC的中點(diǎn)M對(duì)應(yīng)的參數(shù)值是()

A.

B.

C.

D.答案:B27.已知a,b,c∈R+,且a+b+c=1,求3a+1+3b+1+3c+1的最大值.答案:根據(jù)柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18當(dāng)且僅當(dāng)3a+1=3b+1=3c+1,即a=b=c=13時(shí),(3a+1+3b+1+3c+1)2的最大值為18因此,3a+1+3b+1+3c+1的最大值為18=3228.過(guò)點(diǎn)P(4,-1)且與直線(xiàn)3x-4y+6=0垂直的直線(xiàn)方程是(

A.4x+3y-13=0

B.4x-3y-19=0

C.3x-4y-16=0

D.3x+4y-8=0答案:A29.用“斜二測(cè)畫(huà)法”作正三角形ABC的水平放置的直觀圖△A′B′C′,則△A′B′C′與△ABC的面積之比為_(kāi)_____.答案:設(shè)正三角形的標(biāo)出為:1,正三角形的高為:32,所以正三角形的面積為:34;按照“斜二測(cè)畫(huà)法”畫(huà)法,△A′B′C′的面積是:12×1×34×sin45°=616;所以△A′B′C′與△ABC的面積之比為:61634=24,故為:2430.紙制的正方體的六個(gè)面根據(jù)其方位分別標(biāo)記為上、下、東、南、西、北.現(xiàn)在沿該正方體的一些棱將正方體剪開(kāi)、外面朝上展平,得到右側(cè)的平面圖形,則標(biāo)“△”的面的方位()

A.南

B.北

C.西

D.下

答案:B31.若不等式logax>sin2x(a>0,a≠1)對(duì)任意x∈(0,π4)都成立,則a的取值范圍是()A.(0,π4)B.(π4,1)C.(π4,π2)D.(0,1)答案:∵當(dāng)x∈(0,π4)時(shí),函數(shù)y=logax的圖象要恒在函數(shù)y=sin2x圖象的上方∴0<a<1如右圖所示當(dāng)y=logax的圖象過(guò)點(diǎn)(π4,1)時(shí),a=π4,然后它只能向右旋轉(zhuǎn),此時(shí)a在增大,但是不能大于1故選B.32.如圖是將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù)的一個(gè)程序框圖,判斷框內(nèi)應(yīng)填入的條件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù),11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框圖對(duì)累加變量S和循環(huán)變量i的賦值S=1,i=1,i不滿(mǎn)足判斷框中的條件,執(zhí)行S=1+2×S=1+2×1=3,i=1+1=2,i不滿(mǎn)足條件,執(zhí)行S=1+2×3=7,i=2+1=3,i不滿(mǎn)足條件,執(zhí)行S=1+2×7=15,i=3+1=4,i仍不滿(mǎn)足條件,執(zhí)行S=1+2×15=31,此時(shí)31是要輸出的S值,說(shuō)明i不滿(mǎn)足判斷框中的條件,由此可知,判斷框中的條件應(yīng)為i>4.故選D.33.已知一個(gè)球與一個(gè)正三棱柱的三個(gè)側(cè)面和兩個(gè)底面相切,若這個(gè)球的體積是32π3,則這個(gè)三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h(yuǎn)=4.設(shè)其底面邊長(zhǎng)為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:48334.集合{0,1}的子集有()個(gè).A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)答案:根據(jù)題意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4個(gè),故選D.35.已知命題p:所有有理數(shù)都是實(shí)數(shù),命題q:正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.36.若A=1324,B=-123-3,則3A-B=______.答案:∵A=1324,B=-123-3,則3A-B=31324--123-3=39612--123-3=47315.故為:47315.37.如圖,D、E分別在AB、AC上,下列條件不能判定△ADE與△ABC相似的有()

A.∠AED=∠B

B.

C.

D.DE∥BC

答案:C38.命題“所有能被2整除的數(shù)都是偶數(shù)”的否定

是()

A.所有不能被2整除的整數(shù)都是偶數(shù)

B.所有能被2整除的整數(shù)都不是偶數(shù)

C.存在一個(gè)不能被2整除的整數(shù)是偶數(shù)

D.存在一個(gè)能被2整除的整數(shù)不是偶數(shù)答案:D39.如圖,圓O上一點(diǎn)C在直徑AB上的射影為D.AD=2,AC=25,則AB=______.答案:∵AB是直徑,∴△ABC是直角三角形,∵C在直徑AB上的射影為D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故為:1040.中心在原點(diǎn),焦點(diǎn)在橫軸上,長(zhǎng)軸長(zhǎng)為4,短軸長(zhǎng)為2,則橢圓方程是(

A.

B.

C.

D.答案:B41.在三棱錐O-ABC中,M,N分別是OA,BC的中點(diǎn),點(diǎn)G是MN的中點(diǎn),則OG可用基底{OA,OB,OC}表示成:OG=______.答案:如圖,連接ON,在△OBC中,點(diǎn)N是BC中點(diǎn),則由平行四邊形法則得ON=12(OB+OC)在△OMN中,點(diǎn)G是MN中點(diǎn),則由平行四邊形法則得OG=12(OM+ON)=12OM+12ON=14OA+12?12(OB+OC)14(OA+OB+OC),故為:14(OA+OB+OC).42.某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績(jī)合格時(shí),才可繼續(xù)參加科目B的考試.已知每個(gè)科目只允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)科目成績(jī)均合格方可獲得證書(shū).現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績(jī)合格的概率均為23,科目B每次考試成績(jī)合格的概率均為12.假設(shè)各次考試成績(jī)合格與否均互不影響.

(Ⅰ)求他不需要補(bǔ)考就可獲得證書(shū)的概率;

(Ⅱ)在這項(xiàng)考試過(guò)程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為ξ,求ξ的數(shù)學(xué)期望Eξ.答案:設(shè)“科目A第一次考試合格”為事件A1,“科目A補(bǔ)考合格”為事件A2;“科目B第一次考試合格”為事件B1,“科目B補(bǔ)考合格”為事件B2.(Ⅰ)不需要補(bǔ)考就獲得證書(shū)的事件為A1?B1,注意到A1與B1相互獨(dú)立,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即該考生不需要補(bǔ)考就獲得證書(shū)的概率為13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之間的獨(dú)立性與互斥性,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即該考生參加考試次數(shù)的數(shù)學(xué)期望為83.43.已知適合不等式|x2-4x+p|+|x-3|≤5的x的最大值為3,求p的值.答案:因?yàn)閤的最大值為3,故x-3<0,原不等式等價(jià)于|x2-4x+p|-x+3≤5,(3分)即-x-2≤x2-4x+p≤x+2,則x2-5x+p-2≤0x2-3x+p+2≥0

解的最大值為3,(6分)設(shè)x2-5x+p-2=0

的根分別為x1和x2,x1<x2,x2-3x+p+2=0的根分別為x3和

x4,x3<x4.則x2=3,或x4=3.若x2=3,則9-15+p-2=0,p=8,若x4=3,則9-9+p+2=0,p=-2.當(dāng)p=-2時(shí),原不等式無(wú)解,檢驗(yàn)得:p=8

符合題意,故p=8.(12分)44.已知點(diǎn)O為△ABC外接圓的圓心,且有,則△ABC的內(nèi)角A等于()

A.30°

B.60°

C.90°

D.120°答案:A45.P為橢圓x225+y216=1上一點(diǎn),F(xiàn)1,F(xiàn)2分別為其左,右焦點(diǎn),則△PF1F2周長(zhǎng)為_(kāi)_____.答案:由題意知△PF1F2周長(zhǎng)=2a+2c=10+6=16.46.設(shè)點(diǎn)P(+,1)(t>0),則||(O為坐標(biāo)原點(diǎn))的最小值是()

A.

B.

C.5

D.3答案:A47.已知A(1,2),B(-3,b)兩點(diǎn)的距離等于42,則b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故為:6或-248.如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點(diǎn)F是AE的中點(diǎn).求AB與平面BDF所成角的正弦值.答案:AB與平面BDF所成角的正弦值為.解析:以點(diǎn)B為原點(diǎn),BA、BC、BE所在的直線(xiàn)分別為x,y,z軸,建立如圖所示的空間直角坐標(biāo)系,則B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(xiàn)(1,0,1).∴=(0,2,1),=(1,-2,0).設(shè)平面BDF的一個(gè)法向量為n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).設(shè)AB與平面BDF所成的角為,則法向量n與的夾角為-,∴cos(-)===,即sin=,故AB與平面BDF所成角的正弦值為.49.下列數(shù)字特征一定是數(shù)據(jù)組中的數(shù)是()

A.眾數(shù)

B.中位數(shù)

C.標(biāo)準(zhǔn)差

D.平均數(shù)答案:A50.若復(fù)數(shù)z=(2-i)(a-i),(i為虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)a的值為_(kāi)_____.答案:z=(2-i)(a-i)=2a-1-(2+a)i∵若復(fù)數(shù)z=(2-i)(a-i)為純虛數(shù),∴2a-1=0,a+2≠0,∴a=12故為:12第3卷一.綜合題(共50題)1.如果直線(xiàn)l1,l2的斜率分別為二次方程x2-4x+1=0的兩個(gè)根,那么l1與l2的夾角為()

A.

B.

C.

D.答案:A2.設(shè)A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.

(1)求a的值及集合A、B;

(2)設(shè)全集U=A∪B,求(CUA)∪(CUB)的所有子集.答案:解:(1)∵A∩B={2},∴2∈A,∴8+2a+2=0,∴a=﹣5;B={2,﹣5}(2)U=A∪B=,∴CUA={﹣5},CUB=∴(CUA)∪(CUB)=∴(CUA)∪(CUB)的所有子集為:,{﹣5},{},{﹣5,}.3.函數(shù)數(shù)列{fn(x)}滿(mǎn)足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]

(1)求f2(x),f3(x);

(2)猜想fn(x)的表達(dá)式,并證明你的結(jié)論.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用數(shù)學(xué)歸納法證明:①當(dāng)n=1時(shí),f1(x)=x1+x22,已知,顯然成立②假設(shè)當(dāng)n=K(K∈N*)4時(shí),猜想成立,即fk(x)=x1+kx2則當(dāng)n=K+1時(shí),fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即對(duì)n=K+1時(shí),猜想也成立.結(jié)合①②可知:猜想fn(x)=x1+nx2對(duì)一切n∈N*都成立.4.設(shè)兩個(gè)正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線(xiàn)如圖所示,則有()

A.μ1<μ2,σ1>σ2

B.μ1<μ2,σ1<σ2

C.μ1>μ2,σ1>σ2

D.μ1>μ2,σ1<σ2

答案:A5.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是()A.若a+b不是偶數(shù),則a,b都不是奇數(shù)B.若a+b不是偶數(shù),則a,b不都是奇數(shù)C.若a+b是偶數(shù),則a,b都是奇數(shù)D.若a+b是偶數(shù),則a,b不都是奇數(shù)答案:“a,b都是奇數(shù)”的否定是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否定是“a+b不是偶數(shù)”,故命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故選B.6.甲、乙兩人進(jìn)行乒乓球比賽,比賽規(guī)則為“3局2勝”,即以先贏2局者為勝.根據(jù)經(jīng)驗(yàn),每局比賽中甲獲勝的概率為0.6,則本次比賽甲獲勝的概率是(

A.0.216

B.0.36

C.0.432

D.0.648答案:D7.已知橢圓的參數(shù)方程為(?為參數(shù)),點(diǎn)M在橢圓上,點(diǎn)O為原點(diǎn),則當(dāng)?=時(shí),OM的斜率為()

A.1

B.2

C.

D.2答案:D8.不等式|x-500|≤5的解集是______.答案:因?yàn)椴坏仁絴x-500|≤5,由絕對(duì)值不等式的幾何意義可知:{x|495≤x≤505}.故為:{x|495≤x≤505}.9.已知圓C與直線(xiàn)x-y=0及x-y-4=0都相切,圓心在直線(xiàn)x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2答案:圓心在x+y=0上,圓心的縱橫坐標(biāo)值相反,顯然能排除C、D;驗(yàn)證:A中圓心(-1,1)到兩直線(xiàn)x-y=0的距離是|2|2=2;圓心(-1,1)到直線(xiàn)x-y-4=0的距離是62=32≠2.故A錯(cuò)誤.故選B.10.已知平面上直線(xiàn)l的方向向量=(-,),點(diǎn)O(0,0)和A(1,-2)在l上的射影分別是O'和A′,則=λ,其中λ等于()

A.

B.-

C.2

D.-2答案:D11.已知△ABC的三個(gè)頂點(diǎn)A(-2,-1)、B(1,3)、C(2,2),則△ABC的重心坐標(biāo)為_(kāi)_____.答案:設(shè)△ABC的重心坐標(biāo)為(x,y),則有三角形的重心坐標(biāo)公式可得x=-2+1+23=13,y=-1+3+23=43,故△ABC的重心坐標(biāo)為(13,43),故為(13,43).12.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=a2+b22.運(yùn)用類(lèi)比方法,若三棱錐的三條側(cè)棱兩兩互相垂直且長(zhǎng)度分別為a,b,c,則其外接球的半徑R=______.答案:直角三角形外接圓半徑為斜邊長(zhǎng)的一半,由類(lèi)比推理可知若三棱錐的三條側(cè)棱兩兩互相垂直且長(zhǎng)度分別為a,b,c,將三棱錐補(bǔ)成一個(gè)長(zhǎng)方體,其外接球的半徑R為長(zhǎng)方體對(duì)角線(xiàn)長(zhǎng)的一半.故為a2+b2+c22故為:a2+b2+c2213.如圖程序框圖表達(dá)式中N=______.答案:該程序按如下步驟運(yùn)行①N=1×2,此時(shí)i變成3,滿(mǎn)足i≤5,進(jìn)入下一步循環(huán);②N=1×2×3,此時(shí)i變成4,滿(mǎn)足i≤5,進(jìn)入下一步循環(huán);③N=1×2×3×4,此時(shí)i變成5,滿(mǎn)足i≤5,進(jìn)入下一步循環(huán);④N=1×2×3×4×5,此時(shí)i變成6,不滿(mǎn)足i≤5,結(jié)束循環(huán)體并輸出N的值因此,最終輸出的N等于1×2×3×4×5=120故為:12014.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線(xiàn)ρ=2sinθ與ρ=2cosθ的交點(diǎn)的極坐標(biāo)為_(kāi)_____.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點(diǎn)的極坐標(biāo)為(2,π4).故為:(2,π4).15.某校高三年級(jí)舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒(méi)有被排在一起的概率為:()A.110B.120C.140D.1120答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的所有事件是10位同學(xué)參賽演講的順序共有:A1010;滿(mǎn)足條件的事件要得到“一班有3位同學(xué)恰好被排在一起而二班的2位同學(xué)沒(méi)有被排在一起的演講的順序”可通過(guò)如下步驟:①將一班的3位同學(xué)“捆綁”在一起,有A33種方法;②將一班的“一梱”看作一個(gè)對(duì)象與其它班的5位同學(xué)共6個(gè)對(duì)象排成一列,有A66種方法;③在以上6個(gè)對(duì)象所排成一列的7個(gè)間隙(包括兩端的位置)中選2個(gè)位置,將二班的2位同學(xué)插入,有A72種方法.根據(jù)分步計(jì)數(shù)原理(乘法原理),共有A33?A66?A72種方法.∴一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒(méi)有被排在一起的概率為:P=A33?A66?A27A1010=120.故選B.16.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,則點(diǎn)P一定在()A.∠AOB平分線(xiàn)所在直線(xiàn)上B.線(xiàn)段AB中垂線(xiàn)上C.AB邊所在直線(xiàn)上D.AB邊的中線(xiàn)上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|

和b|b|

是△OAB中邊OA、OB上的單位向量,∴(a|a|+b|b|

)在∠AOB平分線(xiàn)線(xiàn)上,∴t(a|a|+b|b|

)在∠AOB平分線(xiàn)線(xiàn)上,∴則點(diǎn)P一定在∠AOB平分線(xiàn)線(xiàn)上,故選A.17.數(shù)集{1,x,2x}中的元素x應(yīng)滿(mǎn)足的條件是______.答案:根據(jù)集合中元素的互異性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故為:x≠1且x≠12且x≠0.18.某次考試,滿(mǎn)分100分,按規(guī)定x≥80者為良好,60≤x<80者為及格,小于60者不及格,畫(huà)出當(dāng)輸入一個(gè)同學(xué)的成績(jī)x時(shí),輸出這個(gè)同學(xué)屬于良好、及格還是不及格的程序框圖.答案:第一步:輸入一個(gè)成績(jī)X(0≤X≤100)第二步:判斷X是否大于等于80,若是,則輸出良好;否則,判斷X是否大于等于60,若是,則輸出及格;否則,輸出不及格;第三步:算法結(jié)束19.命題“零向量與任意向量共線(xiàn)”的否定為_(kāi)_____.答案:命題“零向量與任意向量共線(xiàn)”即“任意向量與零向量共線(xiàn)”,是全稱(chēng)命題,其否定為特稱(chēng)命題:“有的向量與零向量不共線(xiàn)”.故為:“有的向量與零向量不共線(xiàn)”.20.已知A(4,1,3)、B(2,-5,1),C為線(xiàn)段AB上一點(diǎn),且則C的坐標(biāo)為()

A.

B.

C.

D.答案:C21.已知A(4,1,3),B(2,-5,1),C是線(xiàn)段AB上一點(diǎn),且,則C點(diǎn)的坐標(biāo)為()

A.

B.

C.

D.答案:C22.從一批羽毛球產(chǎn)品中任取一個(gè),質(zhì)量小于4.8

g的概率是0.3,質(zhì)量不小于4.85

g的概率是0.32,那么質(zhì)量在[4.8,4.85)g范圍內(nèi)的概率是()

A.0.62

B.0.38

C.0.7

D.0.68答案:B23.設(shè)雙曲線(xiàn)的焦點(diǎn)在x軸上,兩條漸近線(xiàn)為y=±12x,則雙曲線(xiàn)的離心率e=______.答案:依題意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故為52.24.過(guò)點(diǎn)(-1,3)且垂直于直線(xiàn)x-2y+3=0的直線(xiàn)方程為(

A.2x+y-1=0

B.2x+y-5=0

C.x+2y-5=0

D.x-2y+7=0答案:A25.若指數(shù)函數(shù)f(x)與冪函數(shù)g(x)的圖象相交于一點(diǎn)(2,4),則f(x)=______,g(x)=______.答案:設(shè)f(x)=ax(a>0且a≠1),g(x)=xα將(2,4)代入兩個(gè)解析式得4=a2,4=2α解得a=2,α=2故為:f(x)=2x,g(x)=x226.在四棱錐P-ABCD中,底面ABCD是正方形,E為PD中點(diǎn),若PA=a,PB=b,PC=c,則BE=______.答案:BE=12(BP+BD)=-12PB

+12(BA+BC)=-12PB+12BA+12BC=-12PB+12(PA-PB)+12(PC-PB)=-32PB+12PA+

12PC=12a-32b+12c.故為:12a-32b+12c.27.已知函數(shù)f(x)=

-x+1,x<0x-1,x≥0,則不等式x+(x+1)f(x+1)≤1的解集是()

A.[-1,

2-1]B.(-∞,1]C.(-∞,

2-1]D.[-

2-1,

2-1]答案:C解析:由題意x+(x+1)f(x+1)=28.已知橢圓的焦點(diǎn)是F1、F2,P是橢圓上的一個(gè)動(dòng)點(diǎn),如果延長(zhǎng)F1P到Q,使得|PQ|=|PF2|,那么動(dòng)點(diǎn)Q的軌跡是()

A.圓

B.橢圓

C.雙曲線(xiàn)的一支

D.拋物線(xiàn)答案:A29.拋擲兩個(gè)骰子,若至少有一個(gè)1點(diǎn)或一個(gè)6點(diǎn)出現(xiàn),就說(shuō)這次試驗(yàn)失?。敲?,在3次試驗(yàn)中成功2次的概率為()

A.

B.

C.

D.答案:D30.不等式﹣2x+1>0的解集是(

).答案:{x|x<}31.△ABC是邊長(zhǎng)為1的正三角形,那么△ABC的斜二測(cè)平面直觀圖△A′B′C′的面積為(

A.

B.

C.

D.答案:D32.設(shè)A(3,3,1),B(1,0,5),C(0,1,0),則AB的中點(diǎn)M到點(diǎn)C的距離為

______.答案:M為AB的中點(diǎn)設(shè)為(x,y,z),∴x=3+12=2,y=32,z=1+52=3,∴M(2,32,3),∵C(0,1,0),∴MC=22+(32-1)

2

+33=532,故為:532.33.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于點(diǎn)P.若PB=1,PD=3,則BCAD的值為_(kāi)_____.答案:因?yàn)锳,B,C,D四點(diǎn)共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因?yàn)椤螾為公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故為:13.34.若p、q是兩個(gè)簡(jiǎn)單命題,且“p或q”的否定形式是真命題,則()

A.p真q真

B.p真q假

C.p假q真

D.p假q假答案:D35.橢圓=1的焦點(diǎn)為F1,點(diǎn)P在橢圓上,如果線(xiàn)段PF1的中點(diǎn)M在y軸上,那么點(diǎn)M的縱坐標(biāo)是()

A.±

B.±

C.±

D.±答案:A36.把兩條直線(xiàn)的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰當(dāng)?shù)氖牵ǎ?/p>

①平行

②垂直

③相交

④斜交.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論