版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年石家莊科技信息職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知函數(shù)y=ax2+bx+c,如果a>b>c,且a+b+c=0,則它的圖象是(
)
A.
B.
C.
D.
答案:D2.下列說法:
①在殘差圖中,殘差點比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選擇的模型比較合適;
②用相關(guān)指數(shù)可以刻畫回歸的效果,值越大說明模型的擬和效果越好;
③比較兩個模型的擬和效果,可以比較殘差平方和的大小,殘差平方和越小的模型擬和效果越好.
其中說法正確的個數(shù)為()
A.0個
B.1個
C.2個
D.3個答案:C3.設(shè)k>1,則關(guān)于x,y的方程(1-k)x2+y2=k2-1所表示的曲線是()
A.長軸在x軸上的橢圓
B.長軸在y軸上的橢圓
C.實軸在x軸上的雙曲線
D.實軸在y軸上的雙曲線答案:D4.(選做題)(幾何證明選講選做題)如圖,直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交AC邊于點D,AD=2,則∠C的大小為______.答案:∵∠B=90°,AB=4,BC為圓的直徑∴AB與圓相切,由切割線定理得,AB2=AD?AC∴AC=8故∠C=30°故為:30°5.已知圖所示的矩形,其長為12,寬為5.在矩形內(nèi)隨同地措施1000顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為550顆.則可以估計出陰影部分的面積約為______.答案:∵矩形的長為12,寬為5,則S矩形=60∴S陰S矩=S陰60=5501000,∴S陰=33,故:33.6.盒子中有10張獎券,其中3張有獎,甲、乙先后從中各抽取1張(不放回),記“甲中獎”為A,“乙中獎”為B.
(1)求P(A),P(B),P(AB),P(A|B);
(2)A與B是否相互獨立,說明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因為P(A)≠P(A|B),所以A與B不相互獨立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因為P(A)≠P(A|B),所以A與B不相互獨立.7.4個人各寫一張賀年卡,集中后每人取一張別人的賀年卡,共有______種取法.答案:根據(jù)分類計數(shù)問題,可以列舉出所有的結(jié)果,1甲乙互換,丙丁互換2甲丙互換,乙丁互換3甲丁互換,乙丙互換4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通過列舉可以得到共有9種結(jié)果,故為:98.如圖,長方體ABCD-A1B1C1D1中,M為DD1的中點,N在AC上,且AN:NC=2:1.求證:與共面.答案:證明:與共面.9.某班試用電子投票系統(tǒng)選舉班干部候選人.全班k名同學(xué)都有選舉權(quán)和被選舉權(quán),他們的編號分別為1,2,…,k,規(guī)定:同意按“1”,不同意(含棄權(quán))按“0”,令aij=1,第i號同學(xué)同意第j號同學(xué)當(dāng)選.0,第i號同學(xué)不同意第j號同學(xué)當(dāng)選.其中i=1,2,…,k,且j=1,2,…,k,則同時同意第1,2號同學(xué)當(dāng)選的人數(shù)為()A.a(chǎn)11+a12+…+a1k+a21+a22+…+a2kB.a(chǎn)11+a21+…+ak1+a12+a22+…+ak2C.a(chǎn)11a12+a21a22+…+ak1ak2D.a(chǎn)11a21+a12a22+…+a1ka2k答案:第1,2,…,k名學(xué)生是否同意第1號同學(xué)當(dāng)選依次由a11,a21,a31,…,ak1來確定(aij=1表示同意,aij=0表示不同意或棄權(quán)),是否同意第2號同學(xué)當(dāng)選依次由a12,a22,…,ak2確定,而是否同時同意1,2號同學(xué)當(dāng)選依次由a11a12,a21a22,…,ak1ak2確定,故同時同意1,2號同學(xué)當(dāng)選的人數(shù)為a11a12+a21a22+…+ak1ak2,故選C.10.在空間直角坐標(biāo)系O-xyz中,點P(4,3,7)關(guān)于坐標(biāo)平面yOz的對稱點的坐標(biāo)為______.答案:設(shè)所求對稱點為P'(x,y,z)∵關(guān)于坐標(biāo)平面yOz的對稱的兩個點,它們的縱坐標(biāo)、豎坐標(biāo)相等,而橫坐標(biāo)互為相反數(shù),∴x=-4,y=3,z=7即P關(guān)于坐標(biāo)平面yOz的對稱點的坐標(biāo)為P'(-4,3,7)故為:(-4,3,7)11.如圖在長方形ABCD中,AB=,BC=1,E為線段DC上一動點,現(xiàn)將△AED沿AE折起,使點D在面ABC上的射影K在直線AE上,當(dāng)E從D運動到C,則K所形成軌跡的長度為()
A.
B.
C.
D.答案:B12.若指數(shù)函數(shù)f(x)與冪函數(shù)g(x)的圖象相交于一點(2,4),則f(x)=______,g(x)=______.答案:設(shè)f(x)=ax(a>0且a≠1),g(x)=xα將(2,4)代入兩個解析式得4=a2,4=2α解得a=2,α=2故為:f(x)=2x,g(x)=x213.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標(biāo)原點,n∈N*.已知OP1=(2,0),則OP2010的坐標(biāo)為______.答案:A=1011,B=20AA=1011
1011
=1021A3=111
121
=1031依此類推A2009=1020101∴A2009B=1020101
20=24018∴OP2010的坐標(biāo)為(2,4018)故為:(2,4018)14.已知M和N分別是四面體OABC的邊OA,BC的中點,且,若=a,=b,=c,則用a,b,c表示為()
A.
B.
C.
D.
答案:B15.極坐標(biāo)系中,若A(3,π3),B(-3,π6),則s△AOB=______(其中O是極點).答案:∵極坐標(biāo)系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐標(biāo)系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|
=
3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故為:94.16.若直線的參數(shù)方程為(t為參數(shù)),則該直線的斜率為()
A.
B.2
C.1
D.-1答案:D17.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長______.答案:設(shè)另一弦長xcm;由于另一弦被分為3:8的兩段,故兩段的長分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm18.設(shè)集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件答案:B19.已知|OA|=1,|OB|=3,OA?OB=0,點C在∠AOB內(nèi),且∠AOC=30°,設(shè)OC=mOA+nOB(m、n∈R),則mn等于______.答案:∵|OA|=1,|OB|=3,OA?OB=0,OA⊥OBOC?OB=OC×3cos60°=32OC=3×12
|OC
|OC?OA=|OC|×1×cos30°=32|OC|=1×32|OC|∴OC在x軸方向上的分量為12|OC|OC在y軸方向上的分量為32|OC|∵OC=mOA+nOB=3ni+mj∴12|OC|=3n,32|OC|=m兩式相比可得:mn=3.故為:320.直線l1:y=ax+b,l2:y=bx+a
(a≠0,b≠0,a≠b),在同一坐標(biāo)系中的圖形大致是()
A.
B.
C.
D.
答案:C21.下列函數(shù)中,與函數(shù)y=x(x≥0)有相同圖象的一個是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一個函數(shù)與函數(shù)y=x
(x≥0)有相同圖象時,這兩個函數(shù)應(yīng)是同一個函數(shù).A中的函數(shù)和函數(shù)y=x
(x≥0)的值域不同,故不是同一個函數(shù).B中的函數(shù)和函數(shù)y=x
(x≥0)具有相同的定義域、值域、對應(yīng)關(guān)系,故是同一個函數(shù).C中的函數(shù)和函數(shù)y=x
(x≥0)的值域不同,故不是同一個函數(shù).D中的函數(shù)和函數(shù)y=x
(x≥0)的定義域不同,故不是同一個函數(shù).綜上,只有B中的函數(shù)和函數(shù)y=x
(x≥0)是同一個函數(shù),具有相同的圖象,故選B.22.設(shè)集合A={1,2,3,4},集合B={1,3,5,7},則集合A∪B=()A.{1,3}B.{1,2,3,4,5,7}C.{5,7}D.{2,4,5,7}答案:∵A={1,2,3,4},B={1,3,5,7},∴A∪B={1,2,3,4,5,7},故選B.23.直線x+1=0的傾斜角是______.答案:直線x+1=0與x軸垂直,所以直線的傾斜角為90°.故為:90°.24.函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和為a,則a的值為
______.答案:∵y=ax與y=loga(x+1)具有相同的單調(diào)性.∴f(x)=ax+loga(x+1)在[0,1]上單調(diào),∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化簡得1+loga2=0,解得a=12故為:1225.若向量=(2,-3,1),=(2,0,3),=(0,2,2),則(+)=()
A.4
B.15
C.7
D.3答案:D26.已知焦點在x軸上的雙曲線漸近線方程是y=±4x,則該雙曲線的離心率是()
A.
B.
C.
D.答案:A27.已知圓的方程是(x-2)2+(y-3)2=4,則點P(3,2)滿足()
A.是圓心
B.在圓上
C.在圓內(nèi)
D.在圓外答案:C28.(x+1)4的展開式中x2的系數(shù)為()A.4B.6C.10D.20答案:(x+1)4的展開式的通項為Tr+1=C4rxr令r=2得T3=C42x2=6x∴展開式中x2的系數(shù)為6故選項為B29.若關(guān)于的不等式的解集是,則的值為_______答案:-2解析:原不等式,結(jié)合題意畫出圖可知.30.若與垂直,則k的值是()
A.2
B.1
C.0
D.答案:D31.在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.4,則ξ在(0,2)內(nèi)取值的概率為()
A.0.9
B.0.5
C.0.6
D.0.8答案:D32.用反證法證明命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除.”則假設(shè)的內(nèi)容是()
A.a(chǎn),b都能被5整除
B.a(chǎn),b都不能被5整除
C.a(chǎn),b不能被5整除
D.a(chǎn),b有1個不能被5整除答案:B33.△ABC中,若有一個內(nèi)角不小于120°,求證:最長邊與最短邊之比不小于3.答案:設(shè)最大角為∠A,最小角為∠C,則最大邊為a,最小邊為c因為A≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.34.P是△ABC所在平面上的一點,且滿足,若△ABC的面積為1,則△PAB的面積為()
A.
B.
C.
D.答案:B35.一個長方體的長、寬、高之比為2:1:3,全面積為88cm2,則它的體積為
______cm3.答案:由長方體的長、寬、高之比為2:1:3,不妨設(shè)長、寬、高分別為2x,x,3x;則長方體的全面積為:2(2x?x+2x?3x+x?3x)=2×11x2=88,∴x=±2,這里取x=2;所以,長方體的體積為:V=2x?x?3x=4×2×6=48.故為:4836.求兩條平行直線3x-4y-11=0與6x-8y+4=0的距離是()
A.3
B.
C.
D.4答案:B37.已知命題p:所有有理數(shù)都是實數(shù),命題q:正數(shù)的對數(shù)都是負(fù)數(shù),則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.38.求證:菱形各邊中點在以對角線的交點為圓心的同一個圓上.答案:已知:如圖,菱形ABCD的對角線AC和BD相交于點O.求證:菱形ABCD各邊中點M、N、P、Q在以O(shè)為圓心的同一個圓上.證明:∵四邊形ABCD是菱形,∴AC⊥BD,垂足為O,且AB=BC=CD=DA,而M、N、P、Q分別是邊AB、BC、CD、DA的中點,∴OM=ON=OP=OQ=12AB,∴M、N、P、Q四點在以O(shè)為圓心OM為半徑的圓上.所以菱形各邊中點在以對角線的交點為圓心的同一個圓上.39.若一個圓錐的軸截面是邊長為4cm的等邊三角形,則這個圓錐的側(cè)面積為______cm2.答案:如圖所示:∵軸截面是邊長為4等邊三角形,∴OB=2,PB=4.圓錐的側(cè)面積S=π×2×4=8πcm2.故為8π.40.如圖,在正方體ABCD-A1B1C1D1中,E為AB的中點.
(1)求異面直線BD1與CE所成角的余弦值;
(2)求二面角A1-EC-A的余弦值.答案:以D為原點,DC為y軸,DA為x軸,DD1為Z軸建立空間直角坐標(biāo)系,…(1分)則A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值為1515…(1分)(2)D1D⊥平面AEC,所以D1D為平面AEC的法向量,D1D=(0,0,1)…(1分)設(shè)平面A1EC法向量為n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n?A1E=0n?A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)41.條件語句的一般形式如圖所示,其中B表示的是()
A.條件
B.條件語句
C.滿足條件時執(zhí)行的內(nèi)容
D.不滿足條件時執(zhí)行的內(nèi)容
答案:C42.若圓錐的側(cè)面展開圖是弧長為2πcm,半徑為2cm的扇形,則該圓錐的體積為______cm3.答案:∵圓錐的側(cè)面展開圖的弧長為2πcm,半徑為2cm,故圓錐的底面周長為2πcm,母線長為2cm則圓錐的底面半徑為1,高為1則圓錐的體積V=13?π?12?1=π3.故為:π3.43.把平面上一切單位向量的始點放在同一點,那么這些向量的終點所構(gòu)成的圖形是()
A.一條線段
B.一段圓弧
C.圓上一群孤立點
D.一個單位圓答案:D44.以下命題:
①二直線平行的充要條件是它們的斜率相等;
②過圓上的點(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2;
③平面內(nèi)到兩定點的距離之和等于常數(shù)的點的軌跡是橢圓;
④拋物線上任意一點M到焦點的距離都等于點M到其準(zhǔn)線的距離.
其中正確命題的標(biāo)號是______.答案:①兩條直線平行的充要條件是它們的斜率相等,且截距不等,故①不正確,②過點(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2.②正確,③不正確,若平面內(nèi)到兩定點距離之和等于常數(shù),如這個常數(shù)正好為兩個點的距離,則動點的軌跡是兩點的連線段,而不是橢圓;④根據(jù)拋物線的定義知:拋物線上任意一點M到焦點的距離都等于點M到其準(zhǔn)線的距離.故④正確.故為:②④.45.參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))的普通方程為______.答案:把參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))利用同角三角函數(shù)的基本關(guān)系消去參數(shù)化為普通方程為y2=1+x,故為y2=1+x.46.平面α的一個法向量為v1=(1,2,1),平面β的一個法向量為為v2=(-2,-4,10),則平面α與平面β()A.平行B.垂直C.相交D.不確定答案:∵平面α的一個法向量為v1=(1,2,1),平面β的一個法向量為v2=(-2,-4,10),∵v1?v2=1×(-2)+2×(-4)+1×10=0∴v1⊥v2,∴平面α⊥平面β故選B47.已知方程(1+k)x2-(1-k)y2=1表示焦點在x軸上的雙曲線,則k的取值范圍為(
)
A.-1<k<1
B.k>1
C.k<-1
D.k>1或k<-1答案:A48.下列說法中正確的是()
A.若∥,則與向相同
B.若||<||,則<
C.起點不同,但方向相同且模相等的兩個向量相等
D.所有的單位向量都相等答案:C49.已知三角形ABC的頂點坐標(biāo)為A(0,3)、B(-2,-1)、C(4,3),M是BC邊上的中點。
(1)求AB邊所在的直線方程。
(2)求中線AM的長。
(3)求點C關(guān)于直線AB對稱點的坐標(biāo)。答案:解:(1)由兩點式得AB邊所在的直線方程為:=即2x-y+3=0(2)由中點坐標(biāo)公式得M(1,1)∴|AM|==(3)設(shè)C點關(guān)于直線AB的對稱點為C′(x′,y′)則CC′⊥AB且線段CC′的中點在直線AB上。即解之得x′=
y′=C′點坐標(biāo)為(,)50.F1,F(xiàn)2是橢圓x2a2+y2b2=1的兩個焦點,點P是橢圓上任意一點,從F1引∠F1PF2的外角平分線的垂線,交F2P的延長線于M,則點M的軌跡是______.答案:設(shè)從F1引∠F1PF2的外角平分線的垂線,垂足為R∵△PF1M中,PR⊥F1M且PR是∠F1PM的平分線∴|MP|=|F1P|,可得|PF1|+|PF2|=|PM|+|PF2|=|MF2|根據(jù)橢圓的定義,可得|PF1|+|PF2|=2a,∴|MF2|=2a,即動點M到點F2的距離為定值2a,因此,點M的軌跡是以點F2為圓心,半徑為2a的圓.故為:以點F2為圓心,半徑為2a的圓.第2卷一.綜合題(共50題)1.無論m,n取何實數(shù)值,直線(3m-n)x+(m+2n)y-n=0都過定點P,則P點坐標(biāo)為
A.(-1,3)
B.
C.
D.答案:D2.下列四個命題中,正確的有
個
①;
②;
③,使;
④,使為29的約數(shù).答案:兩解析::①∵(-3)2-4×2×40,∴①正確;②∵2×(-1)+1=-1x,∴③不正確;④x=1是29的約數(shù),∴④正確;∴正確的有兩個點評:本題考查全稱命題、特稱命題,容易題3.運用三段論推理:
復(fù)數(shù)不可以比較大小,(大前提)
2010和2011都是復(fù)數(shù),(小前提)
2010和2011不可以比較大小.(結(jié)
論)
該推理是錯誤的,產(chǎn)生錯誤的原因是______錯誤.(填“大前提”或“小前提”)答案:根據(jù)三段論推理,是由兩個前提和一個結(jié)論組成,大前提:復(fù)數(shù)不可以比較大小,是錯誤的,該推理是錯誤的,產(chǎn)生錯誤的原因是大前提錯誤.故為:大前提4.寫出1×2×3×4×5×6的一個算法.答案:按照逐一相乘的程序進(jìn)行第一步:計算1×2,得到2;第二步:將第一步的運算結(jié)果2與3相乘,得到6;第三步:將第二步的運算結(jié)果6與4相乘,得到24;第四步:將第三步的運算結(jié)果24與5相乘,得到120;第五步:將第四的運算結(jié)果120與6相乘,得到720;第六步:輸出結(jié)果.5.如圖,一個空間幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側(cè)面積為()A.π4B.5π4C.πD.3π2答案:此幾何體是一個底面直徑為1,高為1的圓柱底面周長是2π×12=π故側(cè)面積為1×π=π故選C6.已知a=(1,2),則|a|=______.答案:∵a=(1,2),∴|a|=12+22=5.故為5.7.如圖是《集合》一章的知識結(jié)構(gòu)圖,如果要加入“交集”,則應(yīng)該放在()
A.“集合”的下位
B.“概念”的下位
C.“表示”的下位
D.“基本運算”的下位
答案:D8.設(shè)定義域為[x1,x2]的函數(shù)y=f(x)的圖象為C,圖象的兩個端點分別為A、B,點O為坐標(biāo)原點,點M是C上任意一點,向量OA=(x1,y1),OB=(x2,y2),OM=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),又有向量ON=λOA+(1-λ)OB,現(xiàn)定義“函數(shù)y=f(x)在[x1,x2]上可在標(biāo)準(zhǔn)k下線性近似”是指|MN|≤k恒成立,其中k>0,k為常數(shù).根據(jù)上面的表述,給出下列結(jié)論:
①A、B、N三點共線;
②直線MN的方向向量可以為a=(0,1);
③“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)1下線性近似”;
④“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)54下線性近似”.
其中所有正確結(jié)論的番號為______.答案:由ON=λOA+(1-λ)OB,得ON-OB=λ(OA-OB),即BN=λBA故①成立;∵向量OA=(x1,y1),OB=(x2,y2),向量ON=λOA+(1-λ)OB,∴向量ON的橫坐標(biāo)為λx1+(1-λ)x2(0<λ<1),∵OM=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),∴MN∥y軸∴直線MN的方向向量可以為a=(0,1),故②成立對于函數(shù)y=5x2在[0,1]上,易得A(0,0),B(1,5),所以M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),從而|MN|=52(1-λ)2-(1-λ))2=25[(λ-12)2+14]2≤54,故函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)54下線性近似”,故④成立,③不成立,故為:①②④9.在調(diào)試某設(shè)備的線路設(shè)計中,要選一個電阻,調(diào)試者手中只有阻值分別為0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七種阻值不等的定值電阻,他用分?jǐn)?shù)法進(jìn)行優(yōu)法進(jìn)行優(yōu)選試驗時,依次將電阻值從小到大安排序號,則第1個試點的電阻的阻值是(
).答案:3.5kΩ10.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是
______.答案:∵“a,b都是奇數(shù)”的否命題是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否命題是“a+b不是偶數(shù)”,∴命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故為:若a+b不是偶數(shù),則a,b不都是奇數(shù).11.關(guān)于x的方程mx2+2(m+3)x+2m+14=0有兩實根,且一個大于4,一個小于4,求m的取值范圍。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依題意得或,即或,解得。12.直線kx-y+1=3k,當(dāng)k變動時,所有直線都通過定點()
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C13.已知函數(shù)f(x),如果對任意一個三角形,只要它的三邊長a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“保三角形函數(shù)”.在函數(shù)①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函數(shù)”.(填上正確的函數(shù)序號)答案:f1(x),f2(x)是“保三角形函數(shù)”,f3(x)不是“保三角形函數(shù)”.任給三角形,設(shè)它的三邊長分別為a,b,c,則a+b>c,不妨假設(shè)a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函數(shù)”.對于f3(x),3,3,5可作為一個三角形的三邊長,但32+32<52,所以不存在三角形以32,32,52為三邊長,故f3(x)不是“保三角形函數(shù)”.故為:①②.14.不等式≥0的解集為[-2,3∪[7,+∞,則a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值為-2,7中的一個,x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
選B評析:考察考生對不等式解集的結(jié)構(gòu)特征的理解,關(guān)注不等式中等號與不等號的關(guān)系。15.已知單位向量a,b的夾角為,那么|a+2b|=()
A.2
B.
C.2
D.4答案:B16.已知F1、F2為橢圓x225+y29=1的兩個焦點,過F1的直線交橢圓于A、B兩點.若|F2A|+|F2B|=12,則|AB|=______.答案:由橢圓的定義得|AF1|+|AF2|=10|BF1|+|BF2|=10兩式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:817.在數(shù)列{an}中,a1=1,an+1=2an2+an(n∈N+),
(1)求a1,a2,a3并猜想數(shù)列{an}的通項公式;
(2)證明上述猜想.答案:(1)a1=1.a(chǎn)2=2a12+a1=22+1=23.a(chǎn)3=2a22+a2=2×232+23=12(2)猜想an=2n+1.證明:當(dāng)n=1時顯然成立.假設(shè)當(dāng)n=k(k≥1)時成立,即ak=2k+1則當(dāng)n=k+1時,ak+1=2ak2+ak=2×2k+12+2k+1=42k+4=2(k+1)+1所以an=2n+1.18.兩不重合直線l1和l2的方向向量分別為答案:∵直線l1和l2的方向向量分別為19.給出20個數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個求和問題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.20.用WHILE語句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While
i<=63s=s+2^ii=i+1WendPrint
send21.設(shè)A、B為兩個事件,若事件A和B同時發(fā)生的概率為310,在事件A發(fā)生的條件下,事件B發(fā)生的概率為12,則事件A發(fā)生的概率為______.答案:根據(jù)題意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故為:3522.設(shè)雙曲線的漸近線方程為2x±3y=0,則雙曲線的離心率為______.答案:∵雙曲線的漸近線方程是2x±3y=0,∴知焦點是在x軸時,ba=23,設(shè)a=3k,b=2k,則c=13k,∴e=133.焦點在y軸時ba=32,設(shè)a=2k,b=3k,則c=13k,∴e=132.故為:133或13223.命題“若A∩B=A,則A∪B=B”的逆否命題是()A.若A∪B=B,則A∩B=AB.若A∩B≠A,則A∪B≠BC.若A∪B≠B,則A∩B≠AD.若A∪B≠B,則A∩B=A答案:∵“A∩B=A”的否定是“A∩B≠A”,∴命題“若A∩B=A,則A∪B=B”的逆否命題是“若A∪B≠B,則A∩B≠A”.故選C.24.在四棱錐P-ABCD中,底面ABCD是正方形,E為PD中點,若PA=a,PB=b,PC=c,則BE=______.答案:BE=12(BP+BD)=-12PB
+12(BA+BC)=-12PB+12BA+12BC=-12PB+12(PA-PB)+12(PC-PB)=-32PB+12PA+
12PC=12a-32b+12c.故為:12a-32b+12c.25.已知拋物線方程為y2=2px(p>0),過該拋物線焦點F且不與x軸垂直的直線AB交拋物線于A,B兩點,過點A,點B分別作AM,BN垂直于拋物線的準(zhǔn)線,分別交準(zhǔn)線于M,N兩點,那么∠MFN必是()
A.銳角
B.直角
C.鈍角
D.以上皆有可能答案:B26.給出以下四個對象,其中能構(gòu)成集合的有()
①教2011屆高一的年輕教師;
②你所在班中身高超過1.70米的同學(xué);
③2010年廣州亞運會的比賽項目;
④1,3,5.A.1個B.2個C.3個D.4個答案:解析:因為未規(guī)定年輕的標(biāo)準(zhǔn),所以①不能構(gòu)成集合;由于②③④中的對象具備確定性、互異性,所以②③④能構(gòu)成集合.故選C.27.下列在曲線上的點是(
)
A.
B.
C.
D.答案:B28.方程cos2x=x的實根的個數(shù)為
______個.答案:cos2x=x的實根即函數(shù)y=cos2x與y=x的圖象交點的橫坐標(biāo),故可以將求根個數(shù)的問題轉(zhuǎn)化為求兩個函數(shù)圖象的交點個數(shù).如圖在同一坐標(biāo)系中作出y=cos2x與y=x的圖象,由圖象可以看出兩圖象只有一個交點,故方程的實根只有一個.故應(yīng)該填
1.29.已知函數(shù)f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),則A、B、C的大小關(guān)系為______.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又
f(x)=(12)x在R上是減函數(shù),∴f(a+b2)≤f(ab)
≤f(2aba+b)即A≤B≤C故為:A≤B≤C.30.能較好地反映一組數(shù)據(jù)的離散程度的是()
A.眾數(shù)
B.平均數(shù)
C.標(biāo)準(zhǔn)差
D.極差答案:C31.在曲線(t為參數(shù))上的點是()
A.(1,-1)
B.(4,21)
C.(7,89)
D.答案:A32.用反證法證明命題“在函數(shù)f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一個不小于”時,假設(shè)正確的是()
A.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有一個小于
B.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有兩個小于
C.假設(shè)|f(1)|,|f(2)|,|f(3)|都不小于
D.假設(shè)|f(1)|,|f(2)|,|f(3)|都小于答案:D33.拋物線y=14x2的焦點坐標(biāo)是______.答案:拋物線y=14x2
即x2=4y,∴p=2,p2=1,故焦點坐標(biāo)是(0,1),故為(0,1).34.已知點G是△ABC的重心,O是空間任一點,若OA+OB+OC=λOG,則實數(shù)λ=______.答案:由于G是三角形ABC的重心,則有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故為:335.設(shè)F1,F(xiàn)2為定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則動點M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對于在平面內(nèi),若動點M到F1、F2兩點的距離之和等于6,而6正好等于兩定點F1、F2的距離,則動點M的軌跡是以F1,F(xiàn)2為端點的線段.故選D.36.如圖,在⊙O中,弦CD垂直于直徑AB,求證:CBCO=CDCA.答案:證明:連接AD,如圖所示:由垂徑定理得:AD=AC又∵OC=OB∴∠ADC=∠OBC=∠ACD=∠OCB∴△CAD∽△COB∴CBCO=CDCA.37.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,則實數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負(fù)根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負(fù)時,由韋達(dá)定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負(fù)根時,-1≤a≤178故為:-1≤a≤17838.已知隨機(jī)變量X的分布列是:(
)
X
4
a
9
10
P
0.3
0.1
b
0.2
且EX=7.5,則a的值為()
A.5
B.6
C.7
D.8答案:C39.系數(shù)矩陣為.2132.,解為xy=12的一個線性方程組是______.答案:可設(shè)線性方程組為2132xy=mn,由于方程組的解是xy=12,∴mn=47,∴所求方程組為2x+y=43x+2y=7,故為:2x+y=43x+2y=7.40.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點,連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點共圓∴∠EFC=∠D=α∴∠DEB=α故為:α41.“△ABC中,若∠C=90°,則∠A、∠B都是銳角”的否命題為()
A.△ABC中,若∠C≠90°,則∠A、∠B都不是銳角
B.△ABC中,若∠C≠90°,則∠A、∠B不都是銳角
C.△ABC中,若∠C≠90°,則∠A、∠B都不一定是銳角
D.以上都不對答案:B42.在同一個坐標(biāo)系中畫出函數(shù)y=ax,y=sinax的部分圖象,其中a>0且a≠1,則下列所給圖象中可能正確的是()
A.
B.
C.
D.
答案:D43.下列圖象中不能作為函數(shù)圖象的是()A.
B.
C.
D.
答案:根據(jù)函數(shù)的概念:如果在一個變化過程中,有兩個變量x、y,對于x的每一個值,y都有唯一確定的值與之對應(yīng),這時稱y是x的函數(shù).結(jié)合選項可知,只有選項B中是一個x對應(yīng)1或2個y故選B.44.已知a,b,c是三條直線,且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ45.四個森林防火觀察站A,B,C,D的坐標(biāo)依次為(5,0),(-5,0),(0,5),(0,-5),他們都發(fā)現(xiàn)某一地區(qū)有火訊.若A,B觀察到的距離相差為6,且離A近,C,D觀察到的距離相差也為6,且離C近.試求火訊點的坐標(biāo).答案:設(shè)火訊點的坐標(biāo)P(x,y),由于觀察到的距離相差為6,點P在雙曲線上,由于離A近,所以點P在雙曲線x29-y216=1(x≥3)上;由于離C近,所以點P在雙曲線Y29-X216=1(Y≥3)上;由這兩個方程解得:x=1277y=1277答:火訊點的坐標(biāo)為:(1277,1277).46.圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側(cè)面積為84π,則圓臺較小底面的半徑為()A.7B.6C.5D.3答案:設(shè)上底面半徑為r,因為圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側(cè)面積為84π,所以S側(cè)面積=π(r+3r)l=84π,r=7故選A47.若a2+b2+c2=1,則a+2b+3c的最大值為______.答案:因為已知a、b、c是實數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(12+22+32)≥(a+2b+3c)2故(a+2b+3c)2≤14,即2a+b+2c≤14.即a+2b+3c的最大值為14.故為:14.48.在吸煙與患肺病這兩個分類變量的計算中,“若x2的觀測值為6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系”這句話的意思是指()
A.在100個吸煙的人中,必有99個人患肺病
B.有1%的可能性認(rèn)為推理出現(xiàn)錯誤
C.若某人吸煙,則他有99%的可能性患有肺病
D.若某人患肺病,則99%是因為吸煙答案:B49.已知函數(shù)f(x)=f(x+1)(x<4)2x(x≥4),則f(log23)=______.答案:因為1<log23<2,所以4<log23+3<5,所以f(log23)=f(log23+3)=f(log224)=2log224=24.故為:24.50.有五條線段長度分別為1、3、5、7、9,從這5條線段中任取3條,則所取3條線段能構(gòu)成一個三角形的概率為()A.110B.310C.12D.710答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的所有事件是從五條線段中取三條共有C53種結(jié)果,而滿足條件的事件是3、5、7;3、7、9;5、7、9,三種結(jié)果,∴由古典概型公式得到P=3C35=310,故選B.第3卷一.綜合題(共50題)1.已知拋物線C的參數(shù)方程為x=8t2y=8t(t為參數(shù)),設(shè)拋物線C的焦點為F,準(zhǔn)線為l,P為拋物線上一點,PA⊥l,A為垂足,如果直線AF的斜率為-3,那么|PF|=______.答案:把拋物線C的參數(shù)方程x=8t2y=8t(t為參數(shù)),消去參數(shù)化為普通方程為y2=8x.故焦點F(2,0),準(zhǔn)線方程為x=-2,再由直線FA的斜率是-3,可得直線FA的傾斜角為120°,設(shè)準(zhǔn)線和x軸的交點為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點A(0,43),把y=43代入拋物線求得x=6,∴點P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.2.設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=______.答案:因為函數(shù)f(x)是定義在[a,b]上的奇函數(shù),所以定義域關(guān)于原點對稱,所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故為:0.3.拋物線y=4x2的焦點坐標(biāo)是______.答案:由題意可知x2=14y∴p=18∴焦點坐標(biāo)為(0,116)故為(0,116)4.已知向量a=(3,5,1),b=(2,2,3),c=(4,-1,-3),則向量2a-3b+4c的坐標(biāo)為______.答案:∵a=(3,5,1),b=(2,2,3),c=(4,-1,-3),∴向量2a-3b+4c=2(3,5,1)-3(2,2,3)+4(4,-1,-3)=(16,0,-19)故為:(16,0,-19).5.若點(a,9)在函數(shù)y=3x的圖象上,則tanaπ6=______.答案:將(a,9)代入到y(tǒng)=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故為:36.如圖,在長方體OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,點P在棱AA1上,且AP=2PA1,點S在棱BB1上,且SB1=2BS,點Q、R分別是O1B1、AE的中點,求證:PQ∥RS.答案:證明:如圖,建立空間直角坐標(biāo)系,則A(3,0,0),B(0,4,0),O1(0,0,2),A1(3,0,2),B1(0,4,2),E(3,4,0),∵AP=2PA1,∴AP=2PA1=23AA1,即AP=23(0,0,2)=(0,0,43),∴P(3,0,43)同理可得,Q(0,2,2),R(3,2,0),S(0,4,23),∴PQ=(-3,2,23)=RS,∴PQ∥RS,∵R?PQ,∴PQ∥RS7.盒中裝有形狀、大小完全相同的5個球,其中紅色球3個,黃色球2個.若從中隨機(jī)取出2個球,則所取出的2個球顏色不同的概率等于______.答案:從中隨機(jī)取出2個球,每個球被取到的可能性相同,是古典概型從中隨機(jī)取出2個球,所有的取法共有C52=10所取出的2個球顏色不同,所有的取法有C31?C21=6由古典概型概率公式知P=610=35故為358.橢圓x2+my2=1的焦點在y軸上,長軸長是短軸長的兩倍,則m的值為______.答案:方程x2+my2=1變?yōu)閤2+y21m=1∵焦點在y軸上,長軸長是短軸長的兩倍,∴1m=2,解得m=14故應(yīng)填149.有一段“三段論”推理是這樣的:對于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點,因為函數(shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f'(0)=0,所以,x=0是函數(shù)f(x)=x3的極值點.以上推理中()
A.大前提錯誤
B.小前提錯誤
C.推理形式錯誤
D.結(jié)論正確答案:A10.現(xiàn)有10個保送上大學(xué)的名額,分配給7所學(xué)校,每校至少有1個名額,名額分配的方法共有______種(用數(shù)字作答).答案:根據(jù)題意,將10個名額,分配給7所學(xué)校,每校至少有1個名額,可以轉(zhuǎn)化為10個元素之間有9個間隔,要求分成7份,每份不空;相當(dāng)于用6塊檔板插在9個間隔中,共有C96=84種不同方法.所以名額分配的方法共有84種.11.(幾何證明選講選做題)已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓于點F,連接FB,F(xiàn)C.
(1)求證:FB=FC;
(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=33,求AD的長.答案:(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四邊形AFBC內(nèi)接于圓,∴∠DAC=∠FBC;
…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圓的直徑,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6
…10′12.對變量x,y
有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v
有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()
A.變量x
與y
正相關(guān),u
與v
正相關(guān)
B.變量x
與y
負(fù)相關(guān),u
與v
正相關(guān)
C.變量x
與y
正相關(guān),u
與v
負(fù)相關(guān)
D.變量x
與y
負(fù)相關(guān),u
與v
負(fù)相關(guān)答案:B13.由棱長為a的正方體的每個面向外側(cè)作側(cè)棱為a的正四棱錐,以這些棱錐的頂點為頂點的凸多面體的全面積是______.答案:由棱長為a的正方體的每個面向外側(cè)作側(cè)棱為a的正四棱錐,共可作6個,得到6個頂點,圍成一個正八面體.所作的正四棱錐的高為h′=2a2,正八面體相對的兩頂點的距離應(yīng)為2h′+a=1+2a正八面體的棱長x滿足2x=(1+2)a,x=(1+22)a,每個側(cè)面的面積為34x2=34×(1+22)2a2=33+268a2,全面積是8×33+268=33+26故為:(33+26)a214.下列說法中正確的是()
A.若∥,則與向相同
B.若||<||,則<
C.起點不同,但方向相同且模相等的兩個向量相等
D.所有的單位向量都相等答案:C15.若圖中直線l1,l2,l3的斜率分別為k1,k2,k3,則()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直線l2的傾斜角為鈍角,∴k2<0.直線l1,l3的傾斜角為銳角,且直線l1的傾斜角小于l3的傾斜角,∴0<k1<k3.故選A.16.如圖,小圓圈表示網(wǎng)絡(luò)的結(jié)點,結(jié)點之間的連線表示它們有網(wǎng)線相聯(lián),連線標(biāo)注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量,現(xiàn)從結(jié)點B向結(jié)點A傳遞信息,信息可以分開沿不同的路線同時傳遞,則單位時間內(nèi)傳遞的最大信息量為()
A.26
B.24
C.20
D.19
答案:D17.大熊貓活到十歲的概率是0.8,活到十五歲的概率是0.6,若現(xiàn)有一只大熊貓已經(jīng)十歲了,則他活到十五歲的概率是()
A.0.8
B.0.75
C.0.6
D.0.48答案:B18.設(shè)隨機(jī)變量X服從B(6,),則P(X=3)的值是()
A.
B.
C.
D.答案:B19.設(shè)a=log32,b=log23,c=,則()
A.c<b<a
B.a(chǎn)<c<b
C.c<a<b
D.b<c<a答案:C20.如圖:在長方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F(xiàn)分別是線段AB,BC上的點,且EB=FB=1.
(1)求二面角C-DE-C1的大??;
(2)求異面直線EC1與FD1所成角的大小;
(3)求異面直線EC1與FD1之間的距離.答案:(1)以A為原點AB,AD,AA1分別為x軸、y軸、z軸的正向建立空間直角坐標(biāo)系,則有D(0,3,0),D1(0,3,2),E(3,0,0),F(xiàn)(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),F(xiàn)D1=(-4,2,2)(3分)設(shè)向量n=(x,y,z)與平面C1DE垂直,則有n⊥DEn⊥EC1?3x-3y=0x+3y+2z=0?x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),則n0是一個與平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)與平面CDE垂直,∴n0與AA1所成的角θ為二面角C-DE-C1的平面角.(6分)∴cosθ=n0?AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小為arccos63.(8分)(2)設(shè)EC1與FD1所成角為β,(1分)則cosβ=EC1?FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故異面直線EC1與FD1所成角的大小為arccos2114(11分)(3)設(shè)m=(x,y,z)m⊥EC1m⊥FD1?m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)設(shè)所求距離為d,則d=|m?D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).21.已知|a|=1,|b|=2,向量a與b的夾角為60°,則|a+b|=______.答案:∵已知|a|=1,|b|=2,向量a與b的夾角為60°,∴a2=1,b2=4,a?b=1×2×cos60°=1,.∴|.a+b|2=a2+b2+2a?b=1+4+2=7,∴|.a+b|
=7,故為7.22.質(zhì)地均勻的正四面體玩具的4個面上分別刻著數(shù)字1,2,3,4,將4個這樣的玩具同時拋擲于桌面上.
(1)求與桌面接觸的4個面上的4個數(shù)的乘積不能被4整除的概率;
(2)設(shè)ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個數(shù)均為奇數(shù),概率為P1=(12)4=116②4個數(shù)中有3個奇數(shù),另一個為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個面上數(shù)字中偶數(shù)的個數(shù),由題意知ξ的可能取值是0,1,2,3,4,根據(jù)符合二項分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項分布B(4,12),∴Eξ=4×12=2.23.在樣本的頻率分布直方圖中,共有11個小長方形,若中間一個長方形的面積等于其他十個小長方形面積的和的14,且樣本容量是160,則中間一組的頻數(shù)為()A.32B.0.2C.40D.0.25答案:設(shè)間一個長方形的面積S則其他十個小長方形面積的和為4S,所以頻率分布直方圖的總面積為5S所以中間一組的頻率為S5S=0.2所以中間一組的頻數(shù)為160×0.2=32故選A24.投擲一個質(zhì)地均勻的、每個面上標(biāo)有一個數(shù)字的正方體玩具,它的六個面中,有兩個面標(biāo)的數(shù)字是0,兩個面標(biāo)的數(shù)字是2,兩個面標(biāo)的數(shù)字是4,將此玩具連續(xù)拋擲兩次,以兩次朝上一面出現(xiàn)的數(shù)字分別作為點P的橫坐標(biāo)和縱坐標(biāo)
(1)求點P落在區(qū)域C:x2+y2≤10內(nèi)的概率;
(2)若以落在區(qū)域C上的所有點為頂點作面積最大的多邊形區(qū)域M,在區(qū)域C上隨機(jī)撒一粒豆子,求豆子落在區(qū)域M上的概率.答案:(1)點P的坐標(biāo)有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4),共9種,其中落在區(qū)域C:x2+y2≤10上的點P的坐標(biāo)有:(0,0),(0,2),(2,0),(2,2),共4種D、故點P落在區(qū)域C:x2+y2≤10內(nèi)的概率為49.(2)區(qū)域M為一邊長為2的正方形,其面積為4,區(qū)域C的面積為10π,則豆子落在區(qū)域M上的概率為25π.25.某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本、用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號,并按編號順序平均分為40組(1~5號,6~10號,…,196~200號).若第5組抽出的號碼為22,則第8組抽出的號碼應(yīng)是______.若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取______人.答案:∵將全體職工隨機(jī)按1~200編號,并按編號順序平均分為40組,由分組可知,抽號的間隔為5,∵第5組抽出的號碼為22,∴第6組抽出的號碼為27,第7組抽出的號碼為32,第8組抽出的號碼為37.40歲以下的年齡段的職工數(shù)為200×0.5=100,則應(yīng)抽取的人數(shù)為40200×100=20(人).故為:37;2026.已知復(fù)數(shù)w滿足w-4=(3-2w)i(i為虛數(shù)單位),z=5w+|w-2|,求一個以z為根的實系數(shù)一元二次方程.答案:[解法一]∵復(fù)數(shù)w滿足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若實系數(shù)一元二次方程有虛根z=3+i,則必有共軛虛根.z=3-i.∵z+.z=6,z?.z=10,∴所求的一個一元二次方程可以是x2-6x+10=0.[解法二]設(shè)w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].27.參數(shù)方程x=sinθ+cosθy=sinθ?cosθ化為普通方程是______.答案:把x=sinθ+cosθy=sinθ?cosθ利用同角三角函數(shù)的基本關(guān)系消去參數(shù)θ,化為普通方程可得x2=1+2y,故為x2=1+2y.28.已知圓C:x2+y2-4y-6y+12=0,求:
(1)過點A(3,5)的圓的切線方程;
(2)在兩條坐標(biāo)軸上截距相等的圓的切線方程.答案:(l)設(shè)過點A(3,5)的直線?的方程為y-5=k(x-3).因為直線?與⊙C相切,而圓心為C(2,3),則|2k-3-3k+5|k2+1=1,解得k=34所以切線方程為y-5=34(x-3),即3x-4y+11=0.由于過圓外一點A與圓相切的直線有兩條,因此另一條切線方程為x=3.(2)因為原點在圓外,所以設(shè)在兩坐標(biāo)軸上截距相等的直線方程x+y=a或y=kx.由直線與圓相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切線方程為x+y=5士2或y=6±223x.29.不等式log2(x+1)<1的解集為()
A.{x|0<x<1}
B.{x|-1<x≤0}
C.{x|-1<x<1}
D.{x|x>-1}答案:C30.設(shè)全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},則CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故選B.31.已知圓C:x2+y2-4x-6y+12=0的圓心在點C,點A(3,5),求:
(1)過點A的圓的切線方程;
(2)O點是坐標(biāo)原點,連接OA,OC,求△AOC的面積S.答案:(1)⊙C:(x-2)2+(y-3)2=1.當(dāng)切
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報書:反常亞擴(kuò)散在保險與金融中的應(yīng)用
- 課題申報書:俄蘇中亞歷史地理學(xué)史研究
- 13《湖中心亭看雪》公開課一等獎創(chuàng)新教學(xué)設(shè)計
- 上海閔行職業(yè)技術(shù)學(xué)院《基礎(chǔ)教育改革研究》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海旅游高等??茖W(xué)校《現(xiàn)代通信系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海立信會計金融學(xué)院《康復(fù)護(hù)理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上??茖W(xué)技術(shù)職業(yè)學(xué)院《高分子材料助劑與配方設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 4.1+光的直線+教學(xué)課件+2024-2025學(xué)年人教版物理八年級上冊+
- 上海交通大學(xué)《環(huán)境儀器分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 歷史與社會:人教版九年級第五單元第一課第三框《西歐的復(fù)興與聯(lián)合》教學(xué)實錄
- 2024年同等學(xué)力申碩英語考試真題
- 切割鋼絲,簾線濕拉
- 宜都市產(chǎn)業(yè)集群基本情況及產(chǎn)業(yè)鏈
- SF_T 0119-2021 聲像資料鑒定通用規(guī)范_(高清版)
- 汽車機(jī)械識圖圖期末考試卷
- 五年級科學(xué)下冊 給冷水加熱課件1 教科版
- 冪的運算綜合專項練習(xí)50題(共7頁)
- 內(nèi)臟疾病康復(fù) 向云
- 農(nóng)村留守婦女創(chuàng)業(yè)就業(yè)情況調(diào)研報告
- 大型電力變壓器安裝監(jiān)理工作要點
- 第三次全國文物普查建檔備案工作規(guī)范
評論
0/150
提交評論