版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④當1<x<3時,x2+(b﹣1)x+c<1.其中正確的個數(shù)為A.1 B.2 C.3 D.42.小明在一次登山活動中撿到一塊礦石,回家后,他使用一把刻度尺,一只圓柱形的玻璃杯和足量的水,就測量出這塊礦石的體積.如果他量出玻璃杯的內(nèi)直徑d,把礦石完全浸沒在水中,測出杯中水面上升了高度h,則小明的這塊礦石體積是()A. B. C. D.3.如圖,在平面直角坐標系中,位于第二象限,點的坐標是,先把向右平移3個單位長度得到,再把繞點順時針旋轉(zhuǎn)得到,則點的對應(yīng)點的坐標是()A. B. C. D.4.如果三角形滿足一個角是另一個角的3倍,那么我們稱這個三角形為“智慧三角形”.下列各組數(shù)據(jù)中,能作為一個智慧三角形三邊長的一組是()A.1,2,3 B.1,1, C.1,1, D.1,2,5.如圖,在坐標系中放置一菱形OABC,已知∠ABC=60°,點B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2017次,點B的落點依次為B1,B2,B3,…,則B2017的坐標為()A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)6.用配方法解方程時,可將方程變形為()A. B. C. D.7.下列四個實數(shù)中是無理數(shù)的是()A.2.5B.1038.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,2)且與x軸交點的橫坐標分別為x1,x2,其中﹣1<x1<0,1<x2<2,下列結(jié)論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結(jié)論正確的有()A.1個 B.2個 C.3個 D.4個9.如圖,直角三角形ABC中,∠C=90°,AC=2,AB=4,分別以AC、BC為直徑作半圓,則圖中陰影部分的面積為()A.2π﹣ B.π+ C.π+2 D.2π﹣210.在平面直角坐標系xOy中,對于任意三點A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點橫坐標差的最大值,“鉛垂高”h:任意兩點縱坐標差的最大值,則“矩面積”S=ah.例如:三點坐標分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或6二、填空題(本大題共6個小題,每小題3分,共18分)11.64的立方根是_______.12.閱讀下面材料:在數(shù)學課上,老師提出利用尺規(guī)作圖完成下面問題:已知:求作:的內(nèi)切圓.小明的作法如下:如圖2,作,的平分線BE和CF,兩線相交于點O;過點O作,垂足為點D;
點O為圓心,OD長為半徑作所以,即為所求作的圓.請回答:該尺規(guī)作圖的依據(jù)是______.13.已知x1,x2是方程x2+6x+3=0的兩實數(shù)根,則的值為_____.14.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.15.我國明代數(shù)學家程大位的名著《直指算法統(tǒng)宗》里有一道著名算題:“一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚各幾???”意思是:有100個和尚分100個饅頭,如果大和尚一人分3個,小和尚3人分1個,正好分完,試問大、小和尚各幾人?設(shè)大、小和尚各有x,y人,則可以列方程組__________.16.如圖,點A(3,n)在雙曲線y=上,過點A作AC⊥x軸,垂足為C.線段OA的垂直平分線交OC于點B,則△ABC周長的值是.三、解答題(共8題,共72分)17.(8分)圖中的每個小方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC的頂點均在格點上(1)畫出將△ABC繞點B按逆時針方向旋轉(zhuǎn)90°后所得到的△A1BC1;(2)畫出將△ABC向右平移6個單位后得到的△A2B2C2;(3)在(1)中,求在旋轉(zhuǎn)過程中△ABC掃過的面積.18.(8分)如圖,一盞路燈沿燈罩邊緣射出的光線與地面BC交于點B、C,測得∠ABC=45°,∠ACB=30°,且BC=20米.(1)請用圓規(guī)和直尺畫出路燈A到地面BC的距離AD;(不要求寫出畫法,但要保留作圖痕跡)(2)求出路燈A離地面的高度AD.(精確到0.1米)(參考數(shù)據(jù):≈1.414,≈1.732).19.(8分)為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費用不會改變,每套甲種套房提升費用將會提高a萬元(a>0),市政府如何確定方案才能使費用最少?20.(8分)如圖,Rt△ABC的兩直角邊AC邊長為4,BC邊長為3,它的內(nèi)切圓為⊙O,⊙O與邊AB、BC、AC分別相切于點D、E、F,延長CO交斜邊AB于點G.(1)求⊙O的半徑長;(2)求線段DG的長.21.(8分)如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.(1)求新傳送帶AC的長度;(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點4米的貨物MNQP是否需要挪走,并說明理由.(說明:⑴⑵的計算結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.24,≈2.45)22.(10分)如圖①是一副創(chuàng)意卡通圓規(guī),圖②是其平面示意圖,OA是支撐臂,OB是旋轉(zhuǎn)臂.使用時,以點A為支撐點,鉛筆芯端點B可繞點A旋轉(zhuǎn)作出圓.已知OA=OB=10cm.(1)當∠AOB=18°時,求所作圓的半徑(結(jié)果精確到0.01cm);(2)保持∠AOB=18°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度(結(jié)果精確到0.01cm,參考數(shù)據(jù):sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科學計算器).23.(12分)根據(jù)函數(shù)學習中積累的知識與經(jīng)驗,李老師要求學生探究函數(shù)y=+1的圖象.同學們通過列表、描點、畫圖象,發(fā)現(xiàn)它的圖象特征,請你補充完整.(1)函數(shù)y=+1的圖象可以由我們熟悉的函數(shù)的圖象向上平移個單位得到;(2)函數(shù)y=+1的圖象與x軸、y軸交點的情況是:;(3)請你構(gòu)造一個函數(shù),使其圖象與x軸的交點為(2,0),且與y軸無交點,這個函數(shù)表達式可以是.24.向陽中學校園內(nèi)有一條林萌道叫“勤學路”,道路兩邊有如圖所示的路燈(在鉛垂面內(nèi)的示意圖),燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區(qū)域DE的長為13.3米,從D、E兩處測得路燈A的仰角分別為α和45°,且tanα=1.求燈桿AB的長度.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:∵函數(shù)y=x2+bx+c與x軸無交點,∴b2﹣4c<1;故①錯誤。當x=1時,y=1+b+c=1,故②錯誤?!弋攛=3時,y=9+3b+c=3,∴3b+c+6=1。故③正確?!弋?<x<3時,二次函數(shù)值小于一次函數(shù)值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正確。綜上所述,正確的結(jié)論有③④兩個,故選B。2、A【解析】圓柱體的底面積為:π×()2,∴礦石的體積為:π×()2h=.故答案為.3、D【解析】
根據(jù)要求畫出圖形,即可解決問題.【詳解】解:根據(jù)題意,作出圖形,如圖:觀察圖象可知:A2(4,2);故選:D.【點睛】本題考查平移變換,旋轉(zhuǎn)變換等知識,解題的關(guān)鍵是正確畫出圖象,屬于中考常考題型.4、D【解析】
根據(jù)三角形三邊關(guān)系可知,不能構(gòu)成三角形,依此即可作出判定;
B、根據(jù)勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;
C、解直角三角形可知是頂角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,依此即可作出判定.【詳解】∵1+2=3,不能構(gòu)成三角形,故選項錯誤;
B、∵12+12=()2,是等腰直角三角形,故選項錯誤;
C、底邊上的高是=,可知是頂角120°,底角30°的等腰三角形,故選項錯誤;
D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定義,故選項正確.
故選D.5、B【解析】連接AC,如圖所示.∵四邊形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等邊三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,如圖所示.由圖可知:每翻轉(zhuǎn)6次,圖形向右平移2.∵3=336×6+1,∴點B1向右平移1322(即336×2)到點B3.∵B1的坐標為(1.5,),∴B3的坐標為(1.5+1322,),故選B.點睛:本題是規(guī)律題,能正確地尋找規(guī)律“每翻轉(zhuǎn)6次,圖形向右平移2”是解題的關(guān)鍵.6、D【解析】
配方法一般步驟:將常數(shù)項移到等號右側(cè),左右兩邊同時加一次項系數(shù)一半的平方,配方即可.【詳解】解:故選D.【點睛】本題考查了配方法解方程的步驟,屬于簡單題,熟悉步驟是解題關(guān)鍵.7、C【解析】本題主要考查了無理數(shù)的定義.根據(jù)無理數(shù)的定義:無限不循環(huán)小數(shù)是無理數(shù)即可求解.解:A、2.5是有理數(shù),故選項錯誤;B、103C、π是無理數(shù),故選項正確;D、1.414是有理數(shù),故選項錯誤.故選C.8、D【解析】由拋物線的開口向下知a<0,與y軸的交點為在y軸的正半軸上,得c>0,對稱軸為x=<1,∵a<0,∴2a+b<0,而拋物線與x軸有兩個交點,∴?4ac>0,當x=2時,y=4a+2b+c<0,當x=1時,a+b+c=2.∵>2,∴4ac?<8a,∴+8a>4ac,∵①a+b+c=2,則2a+2b+2c=4,②4a+2b+c<0,③a?b+c<0.由①,③得到2a+2c<2,由①,②得到2a?c<?4,4a?2c<?8,上面兩個相加得到6a<?6,∴a<?1.故選D.點睛:本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)中,a的符號由拋物線的開口方向決定;c的符號由拋物線與y軸交點的位置決定;b的符號由對稱軸位置與a的符號決定;拋物線與x軸的交點個數(shù)決定根的判別式的符號,注意二次函數(shù)圖象上特殊點的特點.9、D【解析】分析:觀察圖形可知,陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC,然后根據(jù)扇形面積公式和三角形面積公式計算即可.詳解:連接CD.∵∠C=90°,AC=2,AB=4,∴BC==2.∴陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC==.故選:D.點睛:本題考查了勾股定理,圓的面積公式,三角形的面積公式及割補法求圖形的面積,根據(jù)圖形判斷出陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC是解答本題的關(guān)鍵.10、C【解析】
由題可知“水平底”a的長度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當t>2時,t-1=6,解得t=7;當t<1時,2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點睛】本題考查了平面直角坐標系的內(nèi)容,理解題意是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、4.【解析】
根據(jù)立方根的定義即可求解.【詳解】∵43=64,∴64的立方根是4故答案為4【點睛】此題主要考查立方根的定義,解題的關(guān)鍵是熟知立方根的定義.12、到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線.【解析】
根據(jù)三角形的內(nèi)切圓,三角形的內(nèi)心的定義,角平分線的性質(zhì)即可解答.【詳解】解:該尺規(guī)作圖的依據(jù)是到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線;故答案為到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線.【點睛】此題主要考查了復雜作圖,三角形的內(nèi)切圓與內(nèi)心,關(guān)鍵是掌握角平分線的性質(zhì).13、1.【解析】試題分析:∵,是方程的兩實數(shù)根,∴由韋達定理,知,,∴===1,即的值是1.故答案為1.考點:根與系數(shù)的關(guān)系.14、1.【解析】
根據(jù)(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.【詳解】∵a1-b1=8,
∴(a+b)(a-b)=8,
∵a+b=4,
∴a-b=1,
故答案是:1.【點睛】考查了平方差,關(guān)鍵是掌握(a+b)(a-b)=a1-b1.15、3x+【解析】
根據(jù)100個和尚分100個饅頭,正好分完.大和尚一人分3個,小和尚3人分一個得到等量關(guān)系為:大和尚的人數(shù)+小和尚的人數(shù)=100,大和尚分得的饅頭數(shù)+小和尚分得的饅頭數(shù)=100,依此列出方程組即可.【詳解】設(shè)大和尚x人,小和尚y人,由題意可得x+y=故答案為x+y=【點睛】本題考查了由實際問題抽象出二元一次方程組,關(guān)鍵以和尚數(shù)和饅頭數(shù)作為等量關(guān)系列出方程組.16、2.【解析】
先求出點A的坐標,根據(jù)點的坐標的定義得到OC=3,AC=2,再根據(jù)線段垂直平分線的性質(zhì)可知AB=OB,由此推出△ABC的周長=OC+AC.【詳解】由點A(3,n)在雙曲線y=上得,n=2.∴A(3,2).∵線段OA的垂直平分線交OC于點B,∴OB=AB.則在△ABC中,AC=2,AB+BC=OB+BC=OC=3,∴△ABC周長的值是2.三、解答題(共8題,共72分)17、(1)(1)如圖所示見解析;(3)4π+1.【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得出對應(yīng)點位置,即可畫出圖形;
(1)利用平移的性質(zhì)得出對應(yīng)點位置,進而得出圖形;
(3)根據(jù)△ABC掃過的面積等于扇形BCC1的面積與△A1BC1的面積和,列式進行計算即可.【詳解】(1)如圖所示,△A1BC1即為所求;(1)如圖所示,△A1B1C1即為所求;(3)由題可得,△ABC掃過的面積==4π+1.【點睛】考查了利用旋轉(zhuǎn)變換依據(jù)平移變換作圖,熟練掌握網(wǎng)格結(jié)構(gòu),準確找出對應(yīng)點位置作出圖形是解題的關(guān)鍵.求掃過的面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.18、(1)見解析;(2)是7.3米【解析】
(1)圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立關(guān)于AD的方程,解方程求解.【詳解】解:(1)如下圖,圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)設(shè)AD=x,在Rt△ABD中,∠ABD=45°,∴BD=AD=x,∴CD=20﹣x.∵tan∠ACD=,即tan30°=,∴x==10(﹣1)≈7.3(米).答:路燈A離地面的高度AD約是7.3米.【點睛】解此題關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學問題,把實際問題抽象到解直角三角形中,利用三角函數(shù)解答即可.19、(1)甲:25萬元;乙:28萬元;(2)三種方案;甲種套房提升50套,乙種套房提升30套費用最少;(3)當a=3時,三種方案的費用一樣,都是2240萬元;當a>3時,取m=48時費用最?。划?<a<3時,取m=50時費用最省.【解析】試題分析:(1)設(shè)甲種套房每套提升費用為x萬元,根據(jù)題意建立方程求出其解即可;(2)設(shè)甲種套房提升m套,那么乙種套房提升(80-m)套,根據(jù)條件建立不等式組求出其解就可以求出提升方案,再表示出總費用與m之間的函數(shù)關(guān)系式,根據(jù)一次函數(shù)的性質(zhì)就可以求出結(jié)論;(3)根據(jù)(2)表示出W與m之間的關(guān)系式,由一次函數(shù)的性質(zhì)分類討論就可以得出結(jié)論.(1)設(shè)甲種套房每套提升費用為x萬元,依題意,得625解得:x=25經(jīng)檢驗:x=25符合題意,x+3=28;答:甲,乙兩種套房每套提升費用分別為25萬元,28萬元.(2)設(shè)甲種套房提升套,那么乙種套房提升(m-48)套,依題意,得解得:48≤m≤50即m=48或49或50,所以有三種方案分別是:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套房提升49套,乙種套房提升1.套方案三:甲種套房提升50套,乙種套房提升30套.設(shè)提升兩種套房所需要的費用為W.所以當時,費用最少,即第三種方案費用最少.(3)在(2)的基礎(chǔ)上有:當a=3時,三種方案的費用一樣,都是2240萬元.當a>3時,取m=48時費用W最省.當0<a<3時,取m=50時費用最省.考點:1.一次函數(shù)的應(yīng)用;2.分式方程的應(yīng)用;3.一元一次不等式組的應(yīng)用.20、(1)1;(2)【解析】(1)由勾股定理求AB,設(shè)⊙O的半徑為r,則r=(AC+BC-AB)求解;(2)過G作GP⊥AC,垂足為P,根據(jù)CG平分直角∠ACB可知△PCG為等腰直角三角形,設(shè)PG=PC=x,則CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.試題解析:(1)在Rt△ABC中,由勾股定理得AB==5,∴☉O的半徑r=(AC+BC-AB)=(4+3-5)=1;(2)過G作GP⊥AC,垂足為P,設(shè)GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴=,解得x=,即GP=,CG=,∴OG=CG-CO=-=,在Rt△ODG中,DG==.21、(1)5.6(2)貨物MNQP應(yīng)挪走,理由見解析.【解析】
(1)如圖,作AD⊥BC于點DRt△ABD中,AD=ABsin45°=4在Rt△ACD中,∵∠ACD=30°∴AC=2AD=4即新傳送帶AC的長度約為5.6米.(2)結(jié)論:貨物MNQP應(yīng)挪走.在Rt△ABD中,BD=ABcos45°=4在Rt△ACD中,CD=ACcos30°=∴CB=CD—BD=∵PC=PB—CB≈4—2.1=1.9<2∴貨物MNQP應(yīng)挪走.22、(1)3.13cm(2)鉛筆芯折斷部分的長度約是0.98cm【解析】試題分析:(1)根據(jù)題意作輔助線OC⊥AB于點C,根據(jù)OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度數(shù),從而可以求得AB的長;(2)由題意可知,作出的圓與(1)中所作圓的大小相等,則AE=AB,然后作出相應(yīng)的輔助線,畫出圖形,從而可以求得BE的長,本題得以解決.試題解析:(1)作OC⊥AB于點C,如右圖2所示,由題意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB?sin9°≈2×10×0.1564≈3.13cm,即所作圓的半徑約為3.13cm;(2)作AD⊥OB于點D,作AE=AB,如下圖3所示,∵保持∠AOB=18°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東工業(yè)大學《電子系統(tǒng)基礎(chǔ)》2023-2024學年第一學期期末試卷
- 廣東環(huán)境保護工程職業(yè)學院《探索神奇的植物世界》2023-2024學年第一學期期末試卷
- 廣東東軟學院《合唱與指揮3》2023-2024學年第一學期期末試卷
- 開挖作業(yè)安全培訓課件
- 小學生炒股課件下載視頻
- 《神經(jīng)解剖傳導路》課件
- 《自然資源保護法》課件
- 奧美營銷培訓課件
- 廣東白云學院《建筑結(jié)構(gòu)與識圖》2023-2024學年第一學期期末試卷
- 安全符號課件
- 2024政務(wù)服務(wù)綜合窗口人員能力與服務(wù)規(guī)范考試試題
- (高清版)AQ 2002-2018 煉鐵安全規(guī)程
- 虛擬現(xiàn)實與增強現(xiàn)實
- 08J933-1體育場地與設(shè)施(一)
- 生豬屠宰獸醫(yī)衛(wèi)生檢驗人員理論考試題庫及答案
- 課題論文:引領(lǐng)新經(jīng)濟加速新質(zhì)生產(chǎn)力發(fā)展
- 《五年級上冊科學蘇教版F》期末檢測
- 政府部門勞動合同范例
- 河南省平頂山市郟縣2023-2024學年八年級下學期期末測試英語試題
- 2024年遼寧經(jīng)濟職業(yè)技術(shù)學院單招職業(yè)傾向性測試題庫附答案
- JT∕T 1477-2023 系列2集裝箱 角件
評論
0/150
提交評論