2023屆貴州省六盤水市達(dá)標(biāo)名校中考猜題數(shù)學(xué)試卷含解析_第1頁
2023屆貴州省六盤水市達(dá)標(biāo)名校中考猜題數(shù)學(xué)試卷含解析_第2頁
2023屆貴州省六盤水市達(dá)標(biāo)名校中考猜題數(shù)學(xué)試卷含解析_第3頁
2023屆貴州省六盤水市達(dá)標(biāo)名校中考猜題數(shù)學(xué)試卷含解析_第4頁
2023屆貴州省六盤水市達(dá)標(biāo)名校中考猜題數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.不等式組的解集是()A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤22.如圖,在中,點D為AC邊上一點,則CD的長為()A.1 B. C.2 D.3.用五個完全相同的小正方體組成如圖所示的立體圖形,從正面看到的圖形是()A. B. C. D.4.下列運(yùn)算結(jié)果正確的是()A.3a2-a2=2 B.a(chǎn)2·a3=a6 C.(-a2)3=-a6 D.a(chǎn)2÷a2=a5.已知,兩數(shù)在數(shù)軸上對應(yīng)的點如圖所示,下列結(jié)論正確的是()A. B. C. D.6.如圖,已知反比函數(shù)的圖象過Rt△ABO斜邊OB的中點D,與直角邊AB相交于C,連結(jié)AD、OC,若△ABO的周長為,AD=2,則△ACO的面積為()A. B.1 C.2 D.47.已知拋物線y=ax2+bx+c(a<0)與x軸交于點A(﹣1,0),與y軸的交點在(0,2),(0,3)之間(包含端點),頂點坐標(biāo)為(1,n),則下列結(jié)論:①4a+2b<0;②﹣1≤a≤;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個8.一元二次方程x2﹣2x=0的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣29.下列博物院的標(biāo)識中不是軸對稱圖形的是()A. B.C. D.10.三角形的兩邊長分別為3和6,第三邊的長是方程x2﹣6x+8=0的一個根,則這個三角形的周長是()A.9 B.11 C.13 D.11或1311.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為()A. B. C. D.12.定義:如果一元二次方程ax2+bx+c=0(a≠0)滿足a+b+c=0,那么我們稱這個方程為“和諧”方程;如果一元二次方程ax2+bx+c=0(a≠0)滿足a﹣b+c=0那么我們稱這個方程為“美好”方程,如果一個一元二次方程既是“和諧”方程又是“美好”方程,則下列結(jié)論正確的是()A.方有兩個相等的實數(shù)根 B.方程有一根等于0C.方程兩根之和等于0 D.方程兩根之積等于0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知n>1,M=,N=,P=,則M、N、P的大小關(guān)系為.14.如圖,在平行四邊形紙片上做隨機(jī)扎針實驗,則針頭扎在陰影區(qū)域的概率為__________.15.如圖,已知拋物線與坐標(biāo)軸分別交于A,B,C三點,在拋物線上找到一點D,使得∠DCB=∠ACO,則D點坐標(biāo)為____________________.16.如圖,在平面直角坐標(biāo)系中,矩形OACB的頂點O是坐標(biāo)原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當(dāng)△CDE的周長最小時,則點E的坐標(biāo)____________.17.利用1個a×a的正方形,1個b×b的正方形和2個a×b的矩形可拼成一個正方形(如圖所示),從而可得到因式分解的公式________.18.因式分解:a3-a=______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某高中學(xué)校為高一新生設(shè)計的學(xué)生板凳的正面視圖如圖所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應(yīng)為多長?(材質(zhì)及其厚度等暫忽略不計).20.(6分)某中學(xué)為了考察九年級學(xué)生的中考體育測試成績(滿分30分),隨機(jī)抽查了40名學(xué)生的成績(單位:分),得到如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(1)圖中m的值為_______________.(2)求這40個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù):(3)根據(jù)樣本數(shù)據(jù),估計該中學(xué)九年級2000名學(xué)生中,體育測試成績得滿分的大約有多少名學(xué)生。21.(6分)甲、乙兩名隊員的10次射擊訓(xùn)練,成績分別被制成下列兩個統(tǒng)計圖.并整理分析數(shù)據(jù)如下表:平均成績/環(huán)中位數(shù)/環(huán)眾數(shù)/環(huán)方差甲771.2乙78(1)求,,的值;分別運(yùn)用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓(xùn)練成績.若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊員?22.(8分)如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.23.(8分)如圖,益陽市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小張在小道上測得如下數(shù)據(jù):AB=80.0米,∠PAB=38.1°,∠PBA=26.1.請幫助小張求出小橋PD的長并確定小橋在小道上的位置.(以A,B為參照點,結(jié)果精確到0.1米)(參考數(shù)據(jù):sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)24.(10分)如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC.(1)求證:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半徑.25.(10分)如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線l∥AB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設(shè)直線PB與直線AC交于點E.求∠BAC的度數(shù);當(dāng)點D在AB上方,且CD⊥BP時,求證:PC=AC;在點P的運(yùn)動過程中①當(dāng)點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);②設(shè)⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.26.(12分)某學(xué)?!爸腔鄯綀@”數(shù)學(xué)社團(tuán)遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構(gòu)造△ABD就可以解決問題(如圖2).請回答:∠ADB=°,AB=.請參考以上解決思路,解決問題:如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.27.(12分)如圖,拋物線y=x2+bx+c與x軸交于點A(﹣1,0),B(4,0)與y軸交于點C,點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P作x軸的垂線1,交拋物線與點Q.求拋物線的解析式;當(dāng)點P在線段OB上運(yùn)動時,直線1交BD于點M,試探究m為何值時,四邊形CQMD是平行四邊形;在點P運(yùn)動的過程中,坐標(biāo)平面內(nèi)是否存在點Q,使△BDQ是以BD為直角邊的直角三角形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式組的解集為﹣1<x≤2,故選D2、C【解析】

根據(jù)∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根據(jù)相似三角形對應(yīng)邊的比相等得到代入求值即可.【詳解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故選:C.【點睛】主要考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關(guān)鍵.3、A【解析】從正面看第一層是三個小正方形,第二層左邊一個小正方形,故選:A.4、C【解析】選項A,3a2-a2=2a2;選項B,a2·a3=a5;選項C,(-a2)3=-a6;選項D,a2÷a2=1.正確的只有選項C,故選C.5、C【解析】

根據(jù)各點在數(shù)軸上位置即可得出結(jié)論.【詳解】由圖可知,b<a<0,A.

∵b<a<0,∴a+b<0,故本選項錯誤;B.

∵b<a<0,∴ab>0,故本選項錯誤;C.

∵b<a<0,∴a>b,故本選項正確;D.

∵b<a<0,∴b?a<0,故本選項錯誤.故選C.6、A【解析】

在直角三角形AOB中,由斜邊上的中線等于斜邊的一半,求出OB的長,根據(jù)周長求出直角邊之和,設(shè)其中一直角邊AB=x,表示出OA,利用勾股定理求出AB與OA的長,過D作DE垂直于x軸,得到E為OA中點,求出OE的長,在直角三角形DOE中,利用勾股定理求出DE的長,利用反比例函數(shù)k的幾何意義求出k的值,確定出三角形AOC面積即可.【詳解】在Rt△AOB中,AD=2,AD為斜邊OB的中線,∴OB=2AD=4,由周長為4+2,得到AB+AO=2,設(shè)AB=x,則AO=2-x,根據(jù)勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,∴AB=+,OA=-,過D作DE⊥x軸,交x軸于點E,可得E為AO中點,∴OE=OA=(-)(假設(shè)OA=+,與OA=-,求出結(jié)果相同),在Rt△DEO中,利用勾股定理得:DE==(+)),∴k=-DE?OE=-(+))×(-))=1.∴S△AOC=DE?OE=,故選A.【點睛】本題屬于反比例函數(shù)綜合題,涉及的知識有:勾股定理,直角三角形斜邊的中線性質(zhì),三角形面積求法,以及反比例函數(shù)k的幾何意義,熟練掌握反比例的圖象與性質(zhì)是解本題關(guān)鍵.7、C【解析】

①由拋物線的頂點橫坐標(biāo)可得出b=-2a,進(jìn)而可得出4a+2b=0,結(jié)論①錯誤;

②利用一次函數(shù)圖象上點的坐標(biāo)特征結(jié)合b=-2a可得出a=-,再結(jié)合拋物線與y軸交點的位置即可得出-1≤a≤-,結(jié)論②正確;

③由拋物線的頂點坐標(biāo)及a<0,可得出n=a+b+c,且n≥ax2+bx+c,進(jìn)而可得出對于任意實數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;

④由拋物線的頂點坐標(biāo)可得出拋物線y=ax2+bx+c與直線y=n只有一個交點,將直線下移可得出拋物線y=ax2+bx+c與直線y=n-1有兩個交點,進(jìn)而可得出關(guān)于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根,結(jié)合④正確.【詳解】:①∵拋物線y=ax2+bx+c的頂點坐標(biāo)為(1,n),

∴-=1,

∴b=-2a,

∴4a+2b=0,結(jié)論①錯誤;

②∵拋物線y=ax2+bx+c與x軸交于點A(-1,0),

∴a-b+c=3a+c=0,

∴a=-.

又∵拋物線y=ax2+bx+c與y軸的交點在(0,2),(0,3)之間(包含端點),

∴2≤c≤3,

∴-1≤a≤-,結(jié)論②正確;

③∵a<0,頂點坐標(biāo)為(1,n),

∴n=a+b+c,且n≥ax2+bx+c,

∴對于任意實數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;

④∵拋物線y=ax2+bx+c的頂點坐標(biāo)為(1,n),

∴拋物線y=ax2+bx+c與直線y=n只有一個交點,

又∵a<0,

∴拋物線開口向下,

∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,

∴關(guān)于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根,結(jié)合④正確.

故選C.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系、拋物線與x軸的交點以及二次函數(shù)的性質(zhì),觀察函數(shù)圖象,逐一分析四個結(jié)論的正誤是解題的關(guān)鍵.8、C【解析】

方程左邊分解因式后,利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.【詳解】方程變形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故選C.【點睛】考查了解一元二次方程﹣因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.9、A【解析】

如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,對題中選項進(jìn)行分析即可.【詳解】A、不是軸對稱圖形,符合題意;B、是軸對稱圖形,不合題意;C、是軸對稱圖形,不合題意;D、是軸對稱圖形,不合題意;故選:A.【點睛】此題考查軸對稱圖形的概念,解題的關(guān)鍵在于利用軸對稱圖形的概念判斷選項正誤10、C【解析】試題分析:先求出方程x2-6x+8=0的解,再根據(jù)三角形的三邊關(guān)系求解即可.解方程x2-6x+8=0得x=2或x=4當(dāng)x=2時,三邊長為2、3、6,而2+3<6,此時無法構(gòu)成三角形當(dāng)x=4時,三邊長為4、3、6,此時可以構(gòu)成三角形,周長=4+3+6=13故選C.考點:解一元二次方程,三角形的三邊關(guān)系點評:解題的關(guān)鍵是熟記三角形的三邊關(guān)系:任兩邊之和大于第三邊,任兩邊之差小于第三邊.11、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,F(xiàn)BGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點:1.切線的性質(zhì);3.矩形的性質(zhì).12、C【解析】試題分析:根據(jù)已知得出方程ax2+bx+c=0(a≠0)有兩個根x=1和x=﹣1,再判斷即可.解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,∴方程ax2+bx+c=0(a≠0)有兩個根x=1和x=﹣1,∴1+(﹣1)=0,即只有選項C正確;選項A、B、D都錯誤;故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、M>P>N【解析】∵n>1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M最大;,∴,∴M>P>N.點睛:本題考查了不等式的性質(zhì)和利用作差法比較兩個代數(shù)式的大小.作差法比較大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本題還用到了不等式的傳遞性,即如果a>b,b>c,那么a>b>c.14、【解析】

先根據(jù)平行四邊形的性質(zhì)求出對角線所分的四個三角形面積相等,再求出概率即可.【詳解】解:∵四邊形是平行四邊形,∴對角線把平行四邊形分成面積相等的四部分,觀察發(fā)現(xiàn):圖中陰影部分面積=S四邊形,∴針頭扎在陰影區(qū)域內(nèi)的概率為;故答案為:.【點睛】此題主要考查了幾何概率,以及平行四邊形的性質(zhì),用到的知識點為:概率=相應(yīng)的面積與總面積之比.15、(,),(-4,-5)【解析】

求出點A、B、C的坐標(biāo),當(dāng)D在x軸下方時,設(shè)直線CD與x軸交于點E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,從而可求出E的坐標(biāo),再求出CE的直線解析式,聯(lián)立拋物線即可求出D的坐標(biāo),再由對稱性即可求出D在x軸上方時的坐標(biāo).【詳解】令y=0代入y=-x2-2x+3,∴x=-3或x=1,∴OA=1,OB=3,令x=0代入y=-x2-2x+3,∴y=3,∴OC=3,當(dāng)點D在x軸下方時,∴設(shè)直線CD與x軸交于點E,過點E作EG⊥CB于點G,∵OB=OC,∴∠CBO=45°,∴BG=EG,OB=OC=3,∴由勾股定理可知:BC=3,設(shè)EG=x,∴CG=3-x,∵∠DCB=∠ACO.∴tan∠DCB=tan∠ACO=,∴,∴x=,∴BE=x=,∴OE=OB-BE=,∴E(-,0),設(shè)CE的解析式為y=mx+n,交拋物線于點D2,把C(0,3)和E(-,0)代入y=mx+n,∴,解得:.∴直線CE的解析式為:y=2x+3,聯(lián)立解得:x=-4或x=0,∴D2的坐標(biāo)為(-4,-5)設(shè)點E關(guān)于BC的對稱點為F,連接FB,∴∠FBC=45°,∴FB⊥OB,∴FB=BE=,∴F(-3,)設(shè)CF的解析式為y=ax+b,把C(0,3)和(-3,)代入y=ax+b解得:,∴直線CF的解析式為:y=x+3,聯(lián)立解得:x=0或x=-∴D1的坐標(biāo)為(-,)故答案為(-,)或(-4,-5)【點睛】本題考查二次函數(shù)的綜合問題,解題的關(guān)鍵是根據(jù)對稱性求出相關(guān)點的坐標(biāo),利用直線解析式以及拋物線的解析式即可求出點D的坐標(biāo).16、(1,0)【解析】分析:由于C、D是定點,則CD是定值,如果的周長最小,即有最小值.為此,作點D關(guān)于x軸的對稱點D′,當(dāng)點E在線段CD′上時的周長最小.詳解:如圖,作點D關(guān)于x軸的對稱點D′,連接CD′與x軸交于點E,連接DE.若在邊OA上任取點E′與點E不重合,連接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周長最小,∵在矩形OACB中,OA=3,OB=4,D為OB的中點,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴點E的坐標(biāo)為(1,0).故答案為:(1,0).點睛:考查軸對稱-最短路線問題,坐標(biāo)與圖形性質(zhì),相似三角形的判定與性質(zhì)等,找出點E的位置是解題的關(guān)鍵.17、a1+1ab+b1=(a+b)1【解析】試題分析:兩個正方形的面積分別為a1,b1,兩個長方形的面積都為ab,組成的正方形的邊長為a+b,面積為(a+b)1,所以a1+1ab+b1=(a+b)1.點睛:本題考查了運(yùn)用完全平方公式分解因式,關(guān)鍵是理解題中給出的各個圖形之間的面積關(guān)系.18、a(a-1)(a+1)【解析】分析:先提取公因式a,再對余下的多項式利用平方差公式繼續(xù)分解.解答:解:a3-a,=a(a2-1),=a(a+1)(a-1).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、44cm【解析】解:如圖,設(shè)BM與AD相交于點H,CN與AD相交于點G,由題意得,MH=8cm,BH=40cm,則BM=32cm,∵四邊形ABCD是等腰梯形,AD=50cm,BC=20cm,∴.∵EF∥CD,∴△BEM∽△BAH.∴,即,解得:EM=1.∴EF=EM+NF+BC=2EM+BC=44(cm).答:橫梁EF應(yīng)為44cm.根據(jù)等腰梯形的性質(zhì),可得AH=DG,EM=NF,先求出AH、GD的長度,再由△BEM∽△BAH,可得出EM,繼而得出EF的長度.20、(1)25;(2)平均數(shù):28.15,所以眾數(shù)是28,中位數(shù)為28,(3)體育測試成績得滿分的大約有300名學(xué)生.【解析】

(1)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得m的值;

(2)根據(jù)條形統(tǒng)計圖中的數(shù)據(jù)可以計算出平均數(shù),得到眾數(shù)和中位數(shù);

(3)根據(jù)樣本中得滿分所占的百分比,可以求得該中學(xué)九年級2000名學(xué)生中,體育測試成績得滿分的大約有多少名學(xué)生.【詳解】解:(1),∴m的值為25;(2)平均數(shù):,因為在這組樣本數(shù)據(jù)中,28出現(xiàn)了12次,出現(xiàn)的次數(shù)最多,所以眾數(shù)是28;因為將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)都是28,所以這組樣本數(shù)據(jù)的中位數(shù)為28;(3)×2000=300(名)∴估計該中學(xué)九年級2000名學(xué)生中,體育測試成績得滿分的大約有300名學(xué)生.【點睛】本題考查條形統(tǒng)計圖、用樣本估計總體、加權(quán)平均數(shù)、中位數(shù)、眾數(shù),解答本題的關(guān)鍵是明確它們各自的計算方法.21、(1)a=7,b=7.5,c=4.2;(2)見解析.【解析】

(1)利用平均數(shù)的計算公式直接計算平均分即可;將乙的成績從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)乙的平均數(shù)利用方差的公式計算即可;(2)結(jié)合平均數(shù)和中位數(shù)、眾數(shù)、方差三方面的特點進(jìn)行分析.【詳解】(1)甲的平均成績a==7(環(huán)),∵乙射擊的成績從小到大重新排列為:3、4、6、7、7、8、8、8、9、10,∴乙射擊成績的中位數(shù)b==7.5(環(huán)),其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=×(16+9+1+3+4+9)=4.2;(2)從平均成績看甲、乙二人的成績相等均為7環(huán),從中位數(shù)看甲射中7環(huán)以上的次數(shù)小于乙,從眾數(shù)看甲射中7環(huán)的次數(shù)最多而乙射中8環(huán)的次數(shù)最多,從方差看甲的成績比乙的成績穩(wěn)定;綜合以上各因素,若選派一名隊員參加比賽的話,可選擇乙參賽,因為乙獲得高分的可能更大.【點睛】本題考查的是條形統(tǒng)計圖和方差、平均數(shù)、中位數(shù)、眾數(shù)的綜合運(yùn)用.熟練掌握平均數(shù)的計算,理解方差的概念,能夠根據(jù)計算的數(shù)據(jù)進(jìn)行綜合分析.22、(1);(2).【解析】【分析】(1)根據(jù)題意可求得2個“-2”所占的扇形圓心角的度數(shù),再利用概率公式進(jìn)行計算即可得;(2)由題意可得轉(zhuǎn)出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情況,再找出符合條件的可能性,根據(jù)概率公式進(jìn)行計算即可得.【詳解】(1)由題意可知:“1”和“3”所占的扇形圓心角為120°,所以2個“-2”所占的扇形圓心角為360°-2×120°=120°,∴轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率為=;(2)由(1)可知,該轉(zhuǎn)盤轉(zhuǎn)出“1”、“3”、“-2”的概率相同,均為,所有可能性如下表所示:第一次第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:所有可能的結(jié)果共9種,其中數(shù)字之積為正數(shù)的的有5種,其概率為.【點睛】本題考查了列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、49.2米【解析】

設(shè)PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的長度,繼而也可確定小橋在小道上的位置.【詳解】解:設(shè)PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°.在Rt△PAD中,,∴.在Rt△PBD中,,∴.又∵AB=80.0米,∴,解得:x≈24.6,即PD≈24.6米.∴DB=2x=49.2米.答:小橋PD的長度約為24.6米,位于AB之間距B點約49.2米.24、(1)詳見解析;(2)OA=.【解析】

(1)連接OB,證明∠ABE=∠ADB,可得∠ABE=∠BDC,則∠ADB=∠BDC;

(2)證明△AEB∽△CBD,AB=x,則BD=2x,可求出AB,則答案可求出.【詳解】(1)證明:連接OB,∵BE為⊙O的切線,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直徑,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四邊形ABCD的外接圓為⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=,∴設(shè)AB=x,則BD=2x,∴,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴,∴,解得x=3,∴AB=x=15,∴OA=.【點睛】本題考查切線的性質(zhì)、解直角三角形、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線解決問題.25、(1)45°;(2)見解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.【解析】

(1)易得△ABC是等腰直角三角形,從而∠BAC=∠CBA=45°;(2)分當(dāng)B在PA的中垂線上,且P在右時;B在PA的中垂線上,且P在左;A在PB的中垂線上,且P在右時;A在PB的中垂線上,且P在左時四中情況求解;(3)①先說明四邊形OHEF是正方形,再利用△DOH∽△DFE求出EF的長,然后利用割補(bǔ)法求面積;②根據(jù)△EPC∽△EBA可求PC=4,根據(jù)△PDC∽△PCA可求PD?PA=PC2=16,再根據(jù)S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面積公式求解.【詳解】(1)解:(1)連接BC,∵AB是直徑,∴∠ACB=90°.∴△ABC是等腰直角三角形,∴∠BAC=∠CBA=45°;(2)解:∵,∴∠CDB=∠CDP=45°,CB=CA,∴CD平分∠BDP又∵CD⊥BP,∴BE=EP,即CD是PB的中垂線,∴CP=CB=CA,(3)①(Ⅰ)如圖2,當(dāng)B在PA的中垂線上,且P在右時,∠ACD=15°;(Ⅱ)如圖3,當(dāng)B在PA的中垂線上,且P在左,∠ACD=105°;(Ⅲ)如圖4,A在PB的中垂線上,且P在右時∠ACD=60°;(Ⅳ)如圖5,A在PB的中垂線上,且P在左時∠ACD=120°②(Ⅰ)如圖6,,.(Ⅱ)如圖7,,,.,.,,,.設(shè)BD=9k,PD=2k,,,,.【點睛】本題是圓的綜合題,熟練掌握30°角所對的直角邊等于斜邊的一半,平行線的性質(zhì),垂直平分線的性質(zhì),相似三角形的判定與性質(zhì),圓周角定理,圓內(nèi)接四邊形的性質(zhì),勾股定理,同底等高的三角形的面積相等是解答本題的關(guān)鍵.26、(1)75;4;(2)CD=4.【解析】

(1)根據(jù)平行線的性質(zhì)可得出∠ADB=∠OAC=75°,結(jié)合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質(zhì)可求出OD的值,進(jìn)而可得出AD的值,由三角形內(nèi)角和定理可得出∠ABD=75°=∠ADB,由等角對等邊可得出AB=AD=4,此題得解;(2)過點B作BE∥AD交AC于點E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的長度,再在Rt△CAD中,利用勾股定理可求出DC的長,此題得解.【詳解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論