2022屆浙江省湖州市示范中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第1頁
2022屆浙江省湖州市示范中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第2頁
2022屆浙江省湖州市示范中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第3頁
2022屆浙江省湖州市示范中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第4頁
2022屆浙江省湖州市示范中學(xué)高三第一次模擬考試數(shù)學(xué)試卷含解析_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余17頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),,的零點(diǎn)分別為,,,則()A. B.C. D.2.已知雙曲線的左、右焦點(diǎn)分別為,,P是雙曲線E上的一點(diǎn),且.若直線與雙曲線E的漸近線交于點(diǎn)M,且M為的中點(diǎn),則雙曲線E的漸近線方程為()A. B. C. D.3.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.4.斜率為1的直線l與橢圓相交于A、B兩點(diǎn),則的最大值為A.2 B. C. D.5.已知,滿足約束條件,則的最大值為A. B. C. D.6.已知,,則()A. B. C.3 D.47.已知雙曲線(,)的左、右焦點(diǎn)分別為,以(為坐標(biāo)原點(diǎn))為直徑的圓交雙曲線于兩點(diǎn),若直線與圓相切,則該雙曲線的離心率為()A. B. C. D.8.在中,角的對(duì)邊分別為,,若,,且,則的面積為()A. B. C. D.9.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則()A. B. C. D.10.已知函數(shù).下列命題:①函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱;②函數(shù)是周期函數(shù);③當(dāng)時(shí),函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點(diǎn),其中正確命題的序號(hào)是()A.①④ B.②③ C.①③④ D.①②④11.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當(dāng)球與上底面三條棱都相切時(shí)球心到下底面距離為8,則球的體積為()A.1605π3 B.64212.給出個(gè)數(shù),,,,,,其規(guī)律是:第個(gè)數(shù)是,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,以此類推,要計(jì)算這個(gè)數(shù)的和.現(xiàn)已給出了該問題算法的程序框圖如圖,請(qǐng)?jiān)趫D中判斷框中的①處和執(zhí)行框中的②處填上合適的語句,使之能完成該題算法功能()A.; B.;C.; D.;二、填空題:本題共4小題,每小題5分,共20分。13.若滿足約束條件,則的最大值為__________.14.如圖,養(yǎng)殖公司欲在某湖邊依托互相垂直的湖岸線、圍成一個(gè)三角形養(yǎng)殖區(qū).為了便于管理,在線段之間有一觀察站點(diǎn),到直線,的距離分別為8百米、1百米,則觀察點(diǎn)到點(diǎn)、距離之和的最小值為______________百米.15.已知為等比數(shù)列,是它的前項(xiàng)和.若,且與的等差中項(xiàng)為,則__________.16.在四面體中,分別是的中點(diǎn).則下述結(jié)論:①四面體的體積為;②異面直線所成角的正弦值為;③四面體外接球的表面積為;④若用一個(gè)與直線垂直,且與四面體的每個(gè)面都相交的平面去截該四面體,由此得到一個(gè)多邊形截面,則該多邊形截面面積最大值為.其中正確的有_____.(填寫所有正確結(jié)論的編號(hào))三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.18.(12分)在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為:,曲線的參數(shù)方程為其中,為參數(shù),為常數(shù).(1)寫出與的直角坐標(biāo)方程;(2)在什么范圍內(nèi)取值時(shí),與有交點(diǎn).19.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點(diǎn)、分別為,的中點(diǎn),且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.20.(12分)已知點(diǎn)是拋物線的頂點(diǎn),,是上的兩個(gè)動(dòng)點(diǎn),且.(1)判斷點(diǎn)是否在直線上?說明理由;(2)設(shè)點(diǎn)是△的外接圓的圓心,點(diǎn)到軸的距離為,點(diǎn),求的最大值.21.(12分)已知橢圓過點(diǎn),設(shè)橢圓的上頂點(diǎn)為,右頂點(diǎn)和右焦點(diǎn)分別為,,且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線交橢圓于,兩點(diǎn),設(shè)直線與直線的斜率分別為,,若,試判斷直線是否過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.22.(10分)在四棱錐中,底面是邊長為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求三棱錐的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

轉(zhuǎn)化函數(shù),,的零點(diǎn)為與,,的交點(diǎn),數(shù)形結(jié)合,即得解.【詳解】函數(shù),,的零點(diǎn),即為與,,的交點(diǎn),作出與,,的圖象,如圖所示,可知故選:C【點(diǎn)睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點(diǎn),考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.2.C【解析】

由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關(guān)系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點(diǎn)P一定在左支上.由及,得,,再結(jié)合M為的中點(diǎn),得,又因?yàn)镺M是的中位線,又,且,從而直線與雙曲線的左支只有一個(gè)交點(diǎn).在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點(diǎn)睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點(diǎn)三角形等知識(shí),是一道中檔題.3.D【解析】

通過計(jì)算,可得,最后計(jì)算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.4.C【解析】

設(shè)出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進(jìn)而利用弦長公式求得|AB|的表達(dá)式,利用t的范圍求得|AB|的最大值.【詳解】解:設(shè)直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【點(diǎn)睛】本題主要考查了橢圓的應(yīng)用,直線與橢圓的關(guān)系.常需要把直線與橢圓方程聯(lián)立,利用韋達(dá)定理,判別式找到解決問題的突破口.5.D【解析】

作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價(jià)于,作直線,向上平移,易知當(dāng)直線經(jīng)過點(diǎn)時(shí)最大,所以,故選D.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.6.A【解析】

根據(jù)復(fù)數(shù)相等的特征,求出和,再利用復(fù)數(shù)的模公式,即可得出結(jié)果.【詳解】因?yàn)?,所以,解得則.故選:A.【點(diǎn)睛】本題考查相等復(fù)數(shù)的特征和復(fù)數(shù)的模,屬于基礎(chǔ)題.7.D【解析】

連接,可得,在中,由余弦定理得,結(jié)合雙曲線的定義,即得解.【詳解】連接,則,,所以,在中,,,故在中,由余弦定理可得.根據(jù)雙曲線的定義,得,所以雙曲線的離心率故選:D【點(diǎn)睛】本題考查了雙曲線的性質(zhì)及雙曲線的離心率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.8.C【解析】

由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點(diǎn)睛】本題考查了向量共線定理、余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.9.B【解析】

設(shè),根據(jù)復(fù)數(shù)的幾何意義得到、的關(guān)系式,即可得解;【詳解】解:設(shè)∵,∴,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義的應(yīng)用,屬于基礎(chǔ)題.10.A【解析】

根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點(diǎn)知②錯(cuò)誤;函數(shù)定義域?yàn)椋钪迭c(diǎn)即為極值點(diǎn),由知③錯(cuò)誤;令,在和兩種情況下知均無零點(diǎn),知④正確.【詳解】由題意得:定義域?yàn)椋?,為奇函?shù),圖象關(guān)于原點(diǎn)對(duì)稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯(cuò)誤;,,不是最值,③錯(cuò)誤;令,當(dāng)時(shí),,,,此時(shí)與無交點(diǎn);當(dāng)時(shí),,,,此時(shí)與無交點(diǎn);綜上所述:與無交點(diǎn),④正確.故選:.【點(diǎn)睛】本題考查函數(shù)與導(dǎo)數(shù)知識(shí)的綜合應(yīng)用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點(diǎn)個(gè)數(shù)問題的求解;本題綜合性較強(qiáng),對(duì)于學(xué)生的分析和推理能力有較高要求.11.A【解析】

設(shè)球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【詳解】如圖,設(shè)三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設(shè)球心為O,則由球的幾何知識(shí)得ΔOO1M所以O(shè)M=2即球O的半徑為25所以球O的體積為43故選A.【點(diǎn)睛】本題考查與球有關(guān)的組合體的問題,解答本題的關(guān)鍵有兩個(gè):(1)構(gòu)造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關(guān)的問題時(shí)常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c12.A【解析】

要計(jì)算這個(gè)數(shù)的和,這就需要循環(huán)50次,這樣可以確定判斷語句①,根據(jù)累加最的變化規(guī)律可以確定語句②.【詳解】因?yàn)橛?jì)算這個(gè)數(shù)的和,循環(huán)變量的初值為1,所以步長應(yīng)該為1,故判斷語句①應(yīng)為,第個(gè)數(shù)是,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,這樣可以確定語句②為,故本題選A.【點(diǎn)睛】本題考查了補(bǔ)充循環(huán)結(jié)構(gòu),正確讀懂題意是解本題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.4【解析】

作出可行域如圖所示:由,解得.目標(biāo)函數(shù),即為,平移斜率為-1的直線,經(jīng)過點(diǎn)時(shí),.14.【解析】

建系,將直線用方程表示出來,再用參數(shù)表示出線段的長度,最后利用導(dǎo)數(shù)來求函數(shù)最小值.【詳解】以為原點(diǎn),所在直線分別作為軸,建立平面直角坐標(biāo)系,則.設(shè)直線,即,則,所以,所以,,則,則,當(dāng)時(shí),,則單調(diào)遞減,當(dāng)時(shí),,則單調(diào)遞增,所以當(dāng)時(shí),最短,此時(shí).故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的實(shí)際應(yīng)用,屬于中檔題.15.【解析】

設(shè)等比數(shù)列的公比為,根據(jù)題意求出和的值,進(jìn)而可求得和的值,利用等比數(shù)列求和公式可求得的值.【詳解】由等比數(shù)列的性質(zhì)可得,,由于與的等差中項(xiàng)為,則,則,,,,,因此,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列求和,解答的關(guān)鍵就是等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.16.①③④.【解析】

補(bǔ)圖成長方體,在長方體中利用割補(bǔ)法求四面體的體積,和外接球的表面積,以及異面直線的夾角,作出截面即可計(jì)算截面面積的最值.【詳解】根據(jù)四面體特征,可以補(bǔ)圖成長方體設(shè)其邊長為,,解得補(bǔ)成長,寬,高分別為的長方體,在長方體中:①四面體的體積為,故正確②異面直線所成角的正弦值等價(jià)于邊長為的矩形的對(duì)角線夾角正弦值,可得正弦值為,故錯(cuò);③四面體外接球就是長方體的外接球,半徑,其表面積為,故正確;④由于,故截面為平行四邊形,可得,設(shè)異面直線與所成的角為,則,算得,.故正確.故答案為:①③④.【點(diǎn)睛】此題考查根據(jù)幾何體求體積,外接球的表面積,異面直線夾角和截面面積最值,關(guān)鍵在于熟練掌握點(diǎn)線面位置關(guān)系的處理方法,補(bǔ)圖法作為解決體積和外接球問題的常用方法,平常需要積累常見幾何體的補(bǔ)圖方法.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)(2,+∞)【解析】試題分析:(Ⅰ)由題意零點(diǎn)分段即可確定不等式的解集為;(Ⅱ)由題意可得面積函數(shù)為為,求解不等式可得實(shí)數(shù)a的取值范圍為試題解析:(I)當(dāng)時(shí),化為,當(dāng)時(shí),不等式化為,無解;當(dāng)時(shí),不等式化為,解得;當(dāng)時(shí),不等式化為,解得.所以的解集為.(II)由題設(shè)可得,所以函數(shù)的圖像與x軸圍成的三角形的三個(gè)頂點(diǎn)分別為,,,的面積為.由題設(shè)得,故.所以a的取值范圍為18.(1),.(2)【解析】

(1)利用,代入可求;消參可得直角坐標(biāo)方程.(2)將的參數(shù)方程代入的直角坐標(biāo)方程,與有交點(diǎn),可得,解不等式即可求解.【詳解】(1)(2)將的參數(shù)方程代入的直角坐標(biāo)方程得:與有交點(diǎn),即【點(diǎn)睛】本題考查了極坐標(biāo)方程與普通方程的轉(zhuǎn)化、參數(shù)方程與普通方程的轉(zhuǎn)化、直線與圓的位置關(guān)系的判斷,屬于基礎(chǔ)題.19.(1)見解析(2)【解析】

(1)首先可得,再面面垂直的性質(zhì)可得平面,即可得到,再由,即可得到線面垂直;(2)過點(diǎn)做平面的垂線,以為原點(diǎn),分別以,,為,,軸建立空間直角坐標(biāo)系,利用空間向量法求出線面角;【詳解】解:(1)∵,點(diǎn)為的中點(diǎn),∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點(diǎn),∴,∴,又平面,平面,,∴平面.(2)過點(diǎn)做平面的垂線,以為原點(diǎn),分別以,,為,,軸建立空間直角坐標(biāo)系,∵,∴,,,,∴,,,設(shè)平面的法向量為,由,得,令,得,∴,∴直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應(yīng)用,利用空間向量法求線面角,屬于中檔題.20.(1)不在,證明見詳解;(2)【解析】

(1)假設(shè)直線方程,并于拋物線方程聯(lián)立,結(jié)合韋達(dá)定理,計(jì)算,可得,然后驗(yàn)證可得結(jié)果.(2)分別計(jì)算線段中垂線的方程,然后聯(lián)立,根據(jù)(1)的條件可得點(diǎn)的軌跡方程,然后可得焦點(diǎn),結(jié)合拋物線定義可得,計(jì)算可得結(jié)果.【詳解】(1)設(shè)直線方程,根據(jù)題意可知直線斜率一定存在,則則由所以將代入上式化簡可得,所以則直線方程為,所以直線過定點(diǎn),所以可知點(diǎn)不在直線上.(2)設(shè)線段的中點(diǎn)為線段的中點(diǎn)為則直線的斜率為,直線的斜率為可知線段的中垂線的方程為由,所以上式化簡為即線段的中垂線的方程為同理可得:線段的中垂線的方程為則由(1)可知:所以即,所以點(diǎn)軌跡方程為焦點(diǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論