版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,則()A. B. C. D.2.過拋物線()的焦點且傾斜角為的直線交拋物線于兩點.,且在第一象限,則()A. B. C. D.3.已知正方體的棱長為2,點為棱的中點,則平面截該正方體的內(nèi)切球所得截面面積為()A. B. C. D.4.函數(shù)的圖象大致為A. B. C. D.5.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β6.已知向量,且,則m=()A.?8 B.?6C.6 D.87.已知平面向量,滿足且,若對每一個確定的向量,記的最小值為,則當變化時,的最大值為()A. B. C. D.18.已知等差數(shù)列的前項和為,,,則()A.25 B.32 C.35 D.409.已知復數(shù)滿足,則=()A. B.C. D.10.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.11.設集合則()A. B. C. D.12.已知集合,,則為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與圓心為的圓相交于兩點,且,則實數(shù)的值為_________.14.已知數(shù)列的前項和為,,則滿足的正整數(shù)的值為______.15.拋物線的焦點坐標為______.16.已知四棱錐,底面四邊形為正方形,,四棱錐的體積為,在該四棱錐內(nèi)放置一球,則球體積的最大值為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若是的極值點,求的極大值;(2)求實數(shù)的范圍,使得恒成立.18.(12分)已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)判斷函數(shù)的零點個數(shù).19.(12分)設函數(shù).(1)求不等式的解集;(2)若的最小值為,且,求的最小值.20.(12分)已知橢圓的短軸長為,離心率,其右焦點為.(1)求橢圓的方程;(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.21.(12分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最小?22.(10分)已知矩陣,,若矩陣,求矩陣的逆矩陣.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎題.2、C【解析】
作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準線:,作,;,設,故,,.故選:C【點睛】本題考查了拋物線的性質(zhì)綜合,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.3、A【解析】
根據(jù)球的特點可知截面是一個圓,根據(jù)等體積法計算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設內(nèi)切球球心為,到平面的距離為,截面圓的半徑為,因為內(nèi)切球的半徑等于正方體棱長的一半,所以球的半徑為,又因為,所以,又因為,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點睛】本題考查正方體的內(nèi)切球的特點以及球的截面面積的計算,難度一般.任何一個平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計算.4、D【解析】
由題可得函數(shù)的定義域為,因為,所以函數(shù)為奇函數(shù),排除選項B;又,,所以排除選項A、C,故選D.5、B【解析】
根據(jù)線面平行、線面垂直和空間角的知識,判斷A選項的正確性.由線面平行有關知識判斷B選項的正確性.根據(jù)面面垂直的判定定理,判斷C選項的正確性.根據(jù)面面平行的性質(zhì)判斷D選項的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點睛】本小題主要考查空間線線、線面和面面有關命題真假性的判斷,屬于基礎題.6、D【解析】
由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎題.7、B【解析】
根據(jù)題意,建立平面直角坐標系.令.為中點.由即可求得點的軌跡方程.將變形,結(jié)合及平面向量基本定理可知三點共線.由圓切線的性質(zhì)可知的最小值即為到直線的距離最小值,且當與圓相切時,有最大值.利用圓的切線性質(zhì)及點到直線距離公式即可求得直線方程,進而求得原點到直線的距離,即為的最大值.【詳解】根據(jù)題意,設,則由代入可得即點的軌跡方程為又因為,變形可得,即,且所以由平面向量基本定理可知三點共線,如下圖所示:所以的最小值即為到直線的距離最小值根據(jù)圓的切線性質(zhì)可知,當與圓相切時,有最大值設切線的方程為,化簡可得由切線性質(zhì)及點到直線距離公式可得,化簡可得即所以切線方程為或所以當變化時,到直線的最大值為即的最大值為故選:B【點睛】本題考查了平面向量的坐標應用,平面向量基本定理的應用,圓的軌跡方程問題,圓的切線性質(zhì)及點到直線距離公式的應用,綜合性強,屬于難題.8、C【解析】
設出等差數(shù)列的首項和公差,即可根據(jù)題意列出兩個方程,求出通項公式,從而求得.【詳解】設等差數(shù)列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數(shù)列的通項公式的求法和應用,涉及等差數(shù)列的前項和公式的應用,屬于容易題.9、B【解析】
利用復數(shù)的代數(shù)運算法則化簡即可得到結(jié)論.【詳解】由,得,所以,.故選:B.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,屬于基礎題.10、D【解析】由題意得,函數(shù)點定義域為且,所以定義域關于原點對稱,且,所以函數(shù)為奇函數(shù),圖象關于原點對稱,故選D.11、C【解析】
直接求交集得到答案.【詳解】集合,則.故選:.【點睛】本題考查了交集運算,屬于簡單題.12、C【解析】
分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.二、填空題:本題共4小題,每小題5分,共20分。13、0或6【解析】
計算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點睛】本題考查了根據(jù)直線和圓的位置關系求參數(shù),意在考查學生的計算能力和轉(zhuǎn)化能力。14、6【解析】
已知,利用,求出通項,然后即可求解【詳解】∵,∴當時,,∴;當時,,∴,故數(shù)列是首項為-2,公比為2的等比數(shù)列,∴.又,∴,∴,∴.【點睛】本題考查通項求解問題,屬于基礎題15、【解析】
變換得到,計算焦點得到答案.【詳解】拋物線的標準方程為,,所以焦點坐標為.故答案為:【點睛】本題考查了拋物線的焦點坐標,屬于簡單題.16、【解析】
由題知,該四棱錐為正四棱錐,作出該正四棱錐的高和斜高,連接,則球心O必在的邊上,設,由球與四棱錐的內(nèi)切關系可知,設,用和表示四棱錐的體積,解得和的關系,進而表示出內(nèi)切球的半徑,并求出半徑的最大值,進而求出球的體積的最大值.【詳解】設,,由球O內(nèi)切于四棱錐可知,,,則,球O的半徑,,,,當且僅當時,等號成立,此時.故答案為:.【點睛】本題考查了棱錐的體積問題,內(nèi)切球問題,考查空間想象能力,屬于較難的填空壓軸題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】
(1)先對函數(shù)求導,結(jié)合極值存在的條件可求t,然后結(jié)合導數(shù)可研究函數(shù)的單調(diào)性,進而可求極大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0時恒成立,構(gòu)造函數(shù)g(x)=x2+(t﹣2)x﹣tlnx,結(jié)合導數(shù)及函數(shù)的性質(zhì)可求.【詳解】(1),x>0,由題意可得,0,解可得t=﹣4,∴,易得,當x>2,0<x<1時,f′(x)>0,函數(shù)單調(diào)遞增,當1<x<2時,f′(x)<0,函數(shù)單調(diào)遞減,故當x=1時,函數(shù)取得極大值f(1)=﹣3;(2)由f(x)=x2+(t﹣2)x﹣tlnx+2≥2在x>0時恒成立可得,x2+(t﹣2)x﹣tlnx≥0在x>0時恒成立,令g(x)=x2+(t﹣2)x﹣tlnx,則,(i)當t≥0時,g(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,所以g(x)min=g(1)=t﹣1≥0,解可得t≥1,(ii)當﹣2<t<0時,g(x)在()上單調(diào)遞減,在(0,),(1,+∞)上單調(diào)遞增,此時g(1)=t﹣1<﹣1不合題意,舍去;(iii)當t=﹣2時,g′(x)0,即g(x)在(0,+∞)上單調(diào)遞增,此時g(1)=﹣3不合題意;(iv)當t<﹣2時,g(x)在(1,)上單調(diào)遞減,在(0,1),()上單調(diào)遞增,此時g(1)=t﹣1<﹣3不合題意,綜上,t≥1時,f(x)≥2恒成立.【點睛】本題主要考查了利用導數(shù)求解函數(shù)的單調(diào)性及極值,利用導數(shù)與函數(shù)的性質(zhì)處理不等式的恒成立問題,分類討論思想,屬于中檔題.18、(1)(2)答案見解析(3)答案見解析【解析】
(1)設曲線在點,處的切線的斜率為,可求得,,利用直線的點斜式方程即可求得答案;(2)由(Ⅰ)知,,分時,,三類討論,即可求得各種情況下的的單調(diào)區(qū)間為;(3)分與兩類討論,即可判斷函數(shù)的零點個數(shù).【詳解】(1),,設曲線在點,處的切線的斜率為,則,又,曲線在點,處的切線方程為:,即;(2)由(1)知,,故當時,,所以在上單調(diào)遞增;當時,,;,,;的遞減區(qū)間為,遞增區(qū)間為,;當時,同理可得的遞增區(qū)間為,遞減區(qū)間為,;綜上所述,時,單調(diào)遞增為,無遞減區(qū)間;當時,的遞減區(qū)間為,遞增區(qū)間為,;當時,的遞增區(qū)間為,遞減區(qū)間為,;(3)當時,恒成立,所以無零點;當時,由,得:,只有一個零點.【點睛】本題考查利用導數(shù)研究曲線上某點的切線方程,利用導數(shù)研究函數(shù)的單調(diào)性,考查分類討論思想與推理、運算能力,屬于中檔題.19、(1)或(2)最小值為.【解析】
(1)討論,,三種情況,分別計算得到答案.(2)計算得到,再利用均值不等式計算得到答案.【詳解】(1)當時,由,解得;當時,由,解得;當時,由,解得.所以所求不等式的解集為或.(2)根據(jù)函數(shù)圖像知:當時,,所以.因為,由,可知,所以,當且僅當,,時,等號成立.所以的最小值為.【點睛】本題考查了解絕對值不等式,函數(shù)最值,均值不等式,意在考查學生對于不等式,函數(shù)知識的綜合應用.20、(1);(2).【解析】
(1)由已知短軸長求出,離心率求出關系,結(jié)合,即可求解;(2)當直線的斜率都存在時,不妨設直線的方程為,直線與橢圓方程聯(lián)立,利用相交弦長公式求出,斜率為,求出,得到關于的表達式,根據(jù)表達式的特點用“”判別式法求出范圍,當有一斜率不存在時,另一條斜率為,根據(jù)弦長公式,求出,即可求出結(jié)論.【詳解】(1)由得,又由得,則,故橢圓的方程為.(2)由(1)知,①當直線的斜率都存在時,由對稱性不妨設直線的方程為,由,,設,則,則,由橢圓對稱性可設直線的斜率為,則,.令,則,當時,,當時,由得,所以,即,且.②當直線的斜率其中一條不存在時,根據(jù)對稱性不妨設設直線的方程為,斜率不存在,則,,此時.若設的方程為,斜率不存在,則,綜上可知的取值范圍是.【點睛】本題考查橢圓標準方程、直線與橢圓的位置關系,注意根與系數(shù)關系、弦長公式、函數(shù)最值、橢圓性質(zhì)的合理應用,意在考查邏輯推理、計算求解能力,屬于難題.21、(1);(2)當BP為cm時,α+β取得最小值.【解析】
(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設BC=x,根據(jù)得到,解得答案.(2)設BP=t,則,故,設,求導得到函數(shù)單調(diào)性,得到最值.【詳解】(1)作
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 局部止痛藥膏產(chǎn)品供應鏈分析
- 牙齒美白筆項目運營指導方案
- 商品房銷售行業(yè)市場調(diào)研分析報告
- 市場營銷概念開發(fā)行業(yè)營銷策略方案
- 農(nóng)產(chǎn)品供應鏈數(shù)字化行業(yè)相關項目經(jīng)營管理報告
- 蒸臉器項目營銷計劃書
- 科學用探測器商業(yè)機會挖掘與戰(zhàn)略布局策略研究報告
- 為電影制作字幕行業(yè)相關項目經(jīng)營管理報告
- 穿戴式視頻顯示器項目運營指導方案
- 安全監(jiān)控設備出租行業(yè)經(jīng)營分析報告
- DB11T 2250-2024重點用能單位能耗在線監(jiān)測系統(tǒng)接入技術(shù)規(guī)范
- 電力工程投標方案(技術(shù)標)
- 2024年餐廳服務員(技師、高級技師)職業(yè)鑒定理論考試題庫(含答案)
- 人教版部編版統(tǒng)編版一年級語文上冊漢語拼音9《y+w》課件
- 2024年連云港繼續(xù)教育題庫答案-飲食運動與健康
- 正畸提前結(jié)束協(xié)議書
- 城市生態(tài)系統(tǒng)與生物多樣性
- 床上用品采購合同范本
- 課題開題報告【模板】
- 故事繪本愚公移山
- 中國文化概論-第三章中國傳統(tǒng)服飾文化
評論
0/150
提交評論