




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學(xué)業(yè)分層測評(二)(建議用時:45分鐘)[學(xué)業(yè)達標]一、選擇題1.對命題“正三角形的內(nèi)切圓切于三邊中點”可類比猜想:正四面體的內(nèi)切球切于四面體各正三角形的()A.一條中線上的點,但不是中心B.一條垂線上的點,但不是垂心C.一條角平分線上的點,但不是內(nèi)心D.中心【解析】由正四面體的內(nèi)切球可知,內(nèi)切球切于四個面的中心.【答案】D2.下列推理正確的是()A.把a(b+c)與loga(x+y)類比,則有l(wèi)oga(x+y)=logax+logayB.把a(b+c)與sin(x+y)類比,則有sin(x+y)=sinx+sinyC.把(ab)n與(a+b)n類比,則有(x+y)n=xn+ynD.把(a+b)+c與(xy)z類比,則有(xy)z=x(yz)【解析】乘法的結(jié)合律與加法結(jié)合律相類比得(xy)z=x(yz).故選D.【答案】D3.設(shè)△ABC的三邊長分別為a,b,c,△ABC的面積為S,內(nèi)切圓半徑為r,則r=eq\f(2S,a+b+c),類比這個結(jié)論可知:四面體S-ABC的四個面的面積分別為S1,S2,S3,S4,內(nèi)切球半徑為R,四面體S-ABC的體積為V,則R=()【導(dǎo)學(xué)號:94210007】\f(V,S1+S2+S3+S4) \f(2V,S1+S2+S3+S4)\f(3V,S1+S2+S3+S4) \f(4V,S1+S2+S3+S4)【解析】設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個面的距離都是R,所以四面體的體積等于以O(shè)為頂點,分別以四個面為底面的4個三棱錐體積的和.則四面體的體積為V四面體S-ABC=eq\f(1,3)(S1+S2+S3+S4)R,∴R=eq\f(3V,S1+S2+S3+S4).【答案】C4.在等差數(shù)列{an}中,若an>0,公差d≠0,則有a4a6>a3a7.類比上述性質(zhì),在等比數(shù)列{bn}中,若bn>0,公比q≠1,則關(guān)于b5,b7,b4,b8的一個不等關(guān)系正確的是()>b4b8 >b4b5+b7<b4+b8 +b8<b4+b5【解析】b5+b7-b4-b8=b1(q4+q6-q3-q7)=b1[q3(q-1)+q6(1-q)]=b1[-q3(q-1)2(1+q+q2)]<0,∴b5+b7<b4+b8.【答案】C5.已知結(jié)論:“在正三角形ABC中,若D是邊BC的中點,G是三角形ABC的重心,則eq\f(AG,GD)=2”.若把該結(jié)論推廣到空間,則有結(jié)論:“在棱長都相等的四面體A-BCD中,若△BCD的中心為M,四面體內(nèi)部一點O到四面體各面的距離都相等”,則eq\f(AO,OM)=() 【解析】如圖,設(shè)正四面體的棱長為1,即易知其高AM=eq\f(\r(6),3),此時易知點O即為正四面體內(nèi)切球的球心,設(shè)其半徑為r,利用等體積法有4×eq\f(1,3)×eq\f(\r(3),4)r=eq\f(1,3)×eq\f(\r(3),4)×eq\f(\r(6),3)?r=eq\f(\r(6),12),故AO=AM-MO=eq\f(\r(6),3)-eq\f(\r(6),12)=eq\f(\r(6),4),故AO∶OM=eq\f(\r(6),4)∶eq\f(\r(6),12)=3∶1.【答案】C二、填空題6.(2023·山東日照一模)36的所有正約數(shù)之和可按如下方法得到:因為36=22×32,所以36的所有正約數(shù)之和為(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,參照上述方法,可求得200的所有正約數(shù)之和為________.【解析】類比求36的所有正約數(shù)之和的方法,200的所有正約數(shù)之和可按如下方法求得:因為200=23×52,所以200的所有正約數(shù)之和為(1+2+22+23)(1+5+52)=465.【答案】4657.在Rt△ABC中,若C=90°,AC=b,BC=a,則△ABC的外接圓半徑為r=eq\f(\r(a2+b2),2),將此結(jié)論類比到空間有______________________________.【解析】Rt△ABC類比到空間為三棱錐A-BCD,且AB⊥AC,AB⊥AD,AC⊥AD;△ABC的外接圓類比到空間為三棱錐A-BCD的外接球.【答案】在三棱錐A-BCD中,若AB⊥AC,AB⊥AD,AC⊥AD,AB=a,AC=b,AD=c,則三棱錐A-BCD的外接球半徑R=eq\f(\r(a2+b2+c2),2)8.已知等差數(shù)列{an}中,有eq\f(a11+a12+…+a20,10)=eq\f(a1+a2+…+a30,30),則在等比數(shù)列{bn}中,會有類似的結(jié)論____________________.【解析】由等比數(shù)列的性質(zhì)可知b1b30=b2b29=…=b11b20,∴eq\r(10,b11b12…b20)=eq\r(30,b1b2…b30).【答案】eq\r(10,b11b12…b20)=eq\r(30,b1b2…b30)三、解答題9.如圖1-1-13(1),在平面內(nèi)有面積關(guān)系eq\f(S△PA′B′,S△PAB)=eq\f(PA′·PB′,PA·PB),寫出圖1-1-13(2)中類似的體積關(guān)系,并證明你的結(jié)論.(1)(2)圖1-1-13【解】類比eq\f(S△PA′B′,S△PAB)=eq\f(PA′·PB′,PA·PB),有eq\f(VP-A′B′C′,VP-ABC)=eq\f(PA′·PB′·PC′,PA·PB·PC).證明:如圖,設(shè)C′,C到平面PAB的距離分別為h′,h.則eq\f(h′,h)=eq\f(PC′,PC),故eq\f(VP-A′B′C′,VP-ABC)=eq\f(\f(1,3)S△PA′B′·h′,\f(1,3)S△PAB·h)=eq\f(PA′·PB′·h′,PA·PB·h)=eq\f(PA′·PB′·PC′,PA·PB·PC).10.在等差數(shù)列{an}中,若a10=0,則有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N+)成立.類比上述性質(zhì),相應(yīng)地,在等比數(shù)列{bn}中,若b9=1,則有什么樣的等式成立?【解】在等差數(shù)列{an}中,由a10=0,則有a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N+)成立,相應(yīng)地,在等比數(shù)列{bn}中,若b9=1,則可得b1b2…bn=b1b2…b17-n(n<17,n∈N+).[能力提升]1.已知正三角形內(nèi)切圓的半徑是其高的eq\f(1,3),把這個結(jié)論推廣到空間正四面體,類似的結(jié)論是()A.正四面體的內(nèi)切球的半徑是其高的eq\f(1,2)B.正四面體的內(nèi)切球的半徑是其高的eq\f(1,3)C.正四面體的內(nèi)切球的半徑是其高的eq\f(1,4)D.正四面體的內(nèi)切球的半徑是其高的eq\f(1,5)【解析】原問題的解法為等面積法,即S=eq\f(1,2)ah=3×eq\f(1,2)ar?r=eq\f(1,3)h,類比問題的解法應(yīng)為等體積法,V=eq\f(1,3)Sh=4×eq\f(1,3)Sr?r=eq\f(1,4)h,即正四面體的內(nèi)切球的半徑是其高的eq\f(1,4).【答案】C2.若數(shù)列{an}是等差數(shù)列,則數(shù)列{bn}eq\b\lc\(\rc\)(\a\vs4\al\co1(bn=\f(a1+a2+…+an,n)))也為等差數(shù)列.類比這一性質(zhì)可知,若正項數(shù)列{cn}是等比數(shù)列,且{dn}也是等比數(shù)列,則dn的表達式應(yīng)為()=eq\f(c1+c2+…+cn,n)=eq\f(c1·c2·…·cn,n)=eq\r(n,\f(ceq\o\al(n,1)+ceq\o\al(n,2)+…+ceq\o\al(n,n),n))=eq\r(n,c1·c2·…·cn)【解析】若{an}是等差數(shù)列,則a1+a2+…+an=na1+eq\f(n(n-1),2)d,∴bn=a1+eq\f((n-1),2)d=eq\f(d,2)n+a1-eq\f(d,2),即{bn}為等差數(shù)列;若{cn}是等比數(shù)列,則c1·c2·…·cn=ceq\o\al(n,1)·q1+2+…+(n-1)=ceq\o\al(n,1)·qeq\s\up12(\f(n(n-1),2)),∴dn=eq\r(n,c1·c2·…·cn)=c1·qeq\s\up12(\f(n-1,2)),即{dn}為等比數(shù)列.【答案】D3.類比“等差數(shù)列”的定義,寫出“等和數(shù)列”的定義,并解答下列問題:已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,那么a18=________,這個數(shù)列的前n項和Sn的計算公式為________.【導(dǎo)學(xué)號:94210008】【解析】定義“等和數(shù)列”:在一個數(shù)列中,從第二項起每一項與它前一項的和都為同一個常數(shù),那么這個數(shù)列叫做等和數(shù)列,這個常數(shù)叫做該數(shù)列的公和.由上述定義,得an=eq\b\lc\{(\a\vs4\al\co1(2,n為奇數(shù),,3,n為偶數(shù),))故a18=3.從而Sn=eq\b\lc\{(\a\vs4\al\co1(\f(5,2)n-\f(1,2),n為奇數(shù),,\f(5,2)n,n為偶數(shù).))【答案】3Sn=eq\b\lc\{(\a\vs4\al\co1(\f(5,2)n-\f(1,2),n為奇數(shù),,\f(5,2)n,n為偶數(shù)))4.(1)橢圓C:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)與x軸交于A,B兩點,點P是橢圓C上異于A,B的任意一點,直線PA,PB分別與y軸交于點M,N,求證:eq\o(AN,\s\up12(→))·eq\o(BM,\s\up12(→))為定值b2-a2.(2)類比(1)可得如下真命題:雙曲線eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)與x軸交于A,B兩點,點P是雙曲線C上異于A,B的任意一點,直線PA,PB分別與y軸交于點M,N,求證eq\o(AN,\s\up12(→))·eq\o(BM,\s\up12(→))為定值,請寫出這個定值(不要求寫出解題過程).【解】(1)證明如下:設(shè)點P(x0,y0)(x0≠±a),依題意,得A(-a,0),B(a,0),所以直線PA的方程為y=eq\f(y0,x0+a)(x+a).令x=0,得yM=eq\f(ay0,x0+a),同理得yN=-eq\f(ay0,x0-a),所以yMyN=eq\f(a2yeq\o\al(2,0),a2-xeq\o\al(2,0)).又因為點P(x0,y0)在橢圓上,所以eq\f(xeq\o\al(2,0),a2)+eq\f(yeq\o\al(2,0),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 土建瓦工勞務(wù)分包合同
- 常年法律顧問合同
- 詳細操作流程說明書
- 2025年撫州貨運資格證模擬考試題庫下載
- 2025年徐州市汽車租賃合同5篇
- 農(nóng)莊農(nóng)場合作經(jīng)營合同協(xié)議書范本6篇
- 公司副食品購銷合同7篇
- 房地產(chǎn)開發(fā)聯(lián)營合同
- 專利技術(shù)的授權(quán)與使用條款協(xié)議
- 無償保管合同范本-倉儲保管合同8篇
- 單位就業(yè)人員登記表
- 計算機教室(微機室)學(xué)生上機使用記錄
- 學(xué)與教的心理學(xué)第6版(師范專業(yè)心理學(xué))PPT完整全套教學(xué)課件
- 單位下鄉(xiāng)租車方案
- 化工制圖第一章制圖的基本知識課件
- 《植物學(xué)》練習(xí)(二)根、莖、葉營養(yǎng)器官的聯(lián)系及變態(tài)
- 鼎和財險附加意外傷害醫(yī)療保險A款(互聯(lián)網(wǎng)專屬)條款
- 中暑-紅十字應(yīng)急救護培訓(xùn)課件
- 聯(lián)儲共備實施方案
- 光伏工程 危害辨識風險評價表(光伏)
- 高壓電動機試驗報告模板
評論
0/150
提交評論