2022年甘肅省蘭化高考數(shù)學(xué)押題試卷含解析_第1頁
2022年甘肅省蘭化高考數(shù)學(xué)押題試卷含解析_第2頁
2022年甘肅省蘭化高考數(shù)學(xué)押題試卷含解析_第3頁
2022年甘肅省蘭化高考數(shù)學(xué)押題試卷含解析_第4頁
2022年甘肅省蘭化高考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù)滿足,則()A. B. C. D.2.《九章算術(shù)》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細(xì)的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設(shè),假設(shè)金箠由粗到細(xì)各尺重量依次成等差數(shù)列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤3.已知雙曲線的左,右焦點(diǎn)分別為,O為坐標(biāo)原點(diǎn),P為雙曲線在第一象限上的點(diǎn),直線PO,分別交雙曲線C的左,右支于另一點(diǎn),且,則雙曲線的離心率為()A. B.3 C.2 D.4.定義在上的函數(shù)與其導(dǎo)函數(shù)的圖象如圖所示,設(shè)為坐標(biāo)原點(diǎn),、、、四點(diǎn)的橫坐標(biāo)依次為、、、,則函數(shù)的單調(diào)遞減區(qū)間是()A. B. C. D.5.設(shè),,是非零向量.若,則()A. B. C. D.6.設(shè)復(fù)數(shù)滿足,則()A. B. C. D.7.達(dá)芬奇的經(jīng)典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數(shù)百年來讓無數(shù)觀賞者人迷.某業(yè)余愛好者對《蒙娜麗莎》的縮小影像作品進(jìn)行了粗略測繪,將畫中女子的嘴唇近似看作一個(gè)圓弧,在嘴角處作圓弧的切線,兩條切線交于點(diǎn),測得如下數(shù)據(jù):(其中).根據(jù)測量得到的結(jié)果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角大約等于()A. B. C. D.8.已知點(diǎn)(m,8)在冪函數(shù)的圖象上,設(shè),則()A.b<a<c B.a(chǎn)<b<c C.b<c<a D.a(chǎn)<c<b9.已知曲線且過定點(diǎn),若且,則的最小值為().A. B.9 C.5 D.10.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或511.?dāng)?shù)學(xué)中的數(shù)形結(jié)合,也可以組成世間萬物的絢麗畫面.一些優(yōu)美的曲線是數(shù)學(xué)形象美、對稱美、和諧美的結(jié)合產(chǎn)物,曲線恰好是四葉玫瑰線.給出下列結(jié)論:①曲線C經(jīng)過5個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));②曲線C上任意一點(diǎn)到坐標(biāo)原點(diǎn)O的距離都不超過2;③曲線C圍成區(qū)域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結(jié)論的序號是()A.①③ B.②④ C.①②③ D.②③④12.下列不等式成立的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐的四個(gè)頂點(diǎn)在球的球面上,,是邊長為2的正三角形,,則球的體積為__________.14.已知數(shù)列滿足,且恒成立,則的值為____________.15.某陶瓷廠準(zhǔn)備燒制甲、乙、丙三件不同的工藝品,制作過程必須先后經(jīng)過兩次燒制,當(dāng)?shù)谝淮螣坪细窈蠓娇蛇M(jìn)入第二次燒制,再次燒制過程相互獨(dú)立.根據(jù)該廠現(xiàn)有的技術(shù)水平,經(jīng)過第一次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.5、0.6、0.4,經(jīng)過第二次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.6、0.5、0.75;則第一次燒制后恰有一件產(chǎn)品合格的概率為________;經(jīng)過前后兩次燒制后,合格工藝品的件數(shù)為,則隨機(jī)變量的期望為________.16.某中學(xué)數(shù)學(xué)競賽培訓(xùn)班共有10人,分為甲、乙兩個(gè)小組,在一次階段測試中兩個(gè)小組成績的莖葉圖如圖所示,若甲組5名同學(xué)成績的平均數(shù)為81,乙組5名同學(xué)成績的中位數(shù)為73,則x-y的值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,四邊形為正方形,點(diǎn)為線段上的點(diǎn),過三點(diǎn)的平面與交于點(diǎn).將①,②,③中的兩個(gè)補(bǔ)充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.18.(12分)已知橢圓,左、右焦點(diǎn)為,點(diǎn)為上任意一點(diǎn),若的最大值為3,最小值為1.(1)求橢圓的方程;(2)動(dòng)直線過點(diǎn)與交于兩點(diǎn),在軸上是否存在定點(diǎn),使成立,說明理由.19.(12分)隨著互聯(lián)網(wǎng)金融的不斷發(fā)展,很多互聯(lián)網(wǎng)公司推出余額增值服務(wù)產(chǎn)品和活期資金管理服務(wù)產(chǎn)品,如螞蟻金服旗下的“余額寶”,騰訊旗下的“財(cái)富通”,京東旗下“京東小金庫”.為了調(diào)查廣大市民理財(cái)產(chǎn)品的選擇情況,隨機(jī)抽取1200名使用理財(cái)產(chǎn)品的市民,按照使用理財(cái)產(chǎn)品的情況統(tǒng)計(jì)得到如下頻數(shù)分布表:分組頻數(shù)(單位:名)使用“余額寶”使用“財(cái)富通”使用“京東小金庫”30使用其他理財(cái)產(chǎn)品50合計(jì)1200已知這1200名市民中,使用“余額寶”的人比使用“財(cái)富通”的人多160名.(1)求頻數(shù)分布表中,的值;(2)已知2018年“余額寶”的平均年化收益率為,“財(cái)富通”的平均年化收益率為.若在1200名使用理財(cái)產(chǎn)品的市民中,從使用“余額寶”和使用“財(cái)富通”的市民中按分組用分層抽樣方法共抽取7人,然后從這7人中隨機(jī)選取2人,假設(shè)這2人中每個(gè)人理財(cái)?shù)馁Y金有10000元,這2名市民2018年理財(cái)?shù)睦⒖偤蜑?,求的分布列及?shù)學(xué)期望.注:平均年化收益率,也就是我們所熟知的利息,理財(cái)產(chǎn)品“平均年化收益率為”即將100元錢存入某理財(cái)產(chǎn)品,一年可以獲得3元利息.20.(12分)已知橢圓,上頂點(diǎn)為,離心率為,直線交軸于點(diǎn),交橢圓于,兩點(diǎn),直線,分別交軸于點(diǎn),.(Ⅰ)求橢圓的方程;(Ⅱ)求證:為定值.21.(12分)的內(nèi)角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.22.(10分)已知橢圓:(),四點(diǎn),,,中恰有三點(diǎn)在橢圓上.(1)求橢圓的方程;(2)設(shè)橢圓的左右頂點(diǎn)分別為.是橢圓上異于的動(dòng)點(diǎn),求的正切的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

利用復(fù)數(shù)模與除法運(yùn)算即可得到結(jié)果.【詳解】解:,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模,考查計(jì)算能力,屬于基礎(chǔ)題.2.B【解析】

依題意,金箠由粗到細(xì)各尺重量構(gòu)成一個(gè)等差數(shù)列,則,由此利用等差數(shù)列性質(zhì)求出結(jié)果.【詳解】設(shè)金箠由粗到細(xì)各尺重量依次所成得等差數(shù)列為,設(shè)首項(xiàng),則,公差,.故選B【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.3.D【解析】

本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計(jì)算離心率,即可.【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)可以得到PO=MO,而,結(jié)合四邊形對角線平分,可得四邊形為平行四邊形,結(jié)合,故對三角形運(yùn)用余弦定理,得到,而結(jié)合,可得,,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D.【點(diǎn)睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.4.B【解析】

先辨別出圖象中實(shí)線部分為函數(shù)的圖象,虛線部分為其導(dǎo)函數(shù)的圖象,求出函數(shù)的導(dǎo)數(shù)為,由,得出,只需在圖中找出滿足不等式對應(yīng)的的取值范圍即可.【詳解】若虛線部分為函數(shù)的圖象,則該函數(shù)只有一個(gè)極值點(diǎn),但其導(dǎo)函數(shù)圖象(實(shí)線)與軸有三個(gè)交點(diǎn),不合乎題意;若實(shí)線部分為函數(shù)的圖象,則該函數(shù)有兩個(gè)極值點(diǎn),則其導(dǎo)函數(shù)圖象(虛線)與軸恰好也只有兩個(gè)交點(diǎn),合乎題意.對函數(shù)求導(dǎo)得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數(shù)的單調(diào)遞減區(qū)間為.故選:B.【點(diǎn)睛】本題考查利用圖象求函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用圖象辨別函數(shù)與其導(dǎo)函數(shù)的圖象,考查推理能力,屬于中等題.5.D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點(diǎn),作為一類既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識,又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實(shí)有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對解含垂直關(guān)系的問題往往有很好效果.6.D【解析】

根據(jù)復(fù)數(shù)運(yùn)算,即可容易求得結(jié)果.【詳解】.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,屬基礎(chǔ)題.7.A【解析】

由已知,設(shè).可得.于是可得,進(jìn)而得出結(jié)論.【詳解】解:依題意,設(shè).則.,.設(shè)《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角為.則,.故選:A.【點(diǎn)睛】本題考查了直角三角形的邊角關(guān)系、三角函數(shù)的單調(diào)性、切線的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.8.B【解析】

先利用冪函數(shù)的定義求出m的值,得到冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,再利用冪函數(shù)f(x)的單調(diào)性,即可得到a,b,c的大小關(guān)系.【詳解】由冪函數(shù)的定義可知,m﹣1=1,∴m=2,∴點(diǎn)(2,8)在冪函數(shù)f(x)=xn上,∴2n=8,∴n=3,∴冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點(diǎn)睛】本題主要考查了冪函數(shù)的性質(zhì),以及利用函數(shù)的單調(diào)性比較函數(shù)值大小,屬于中檔題.9.A【解析】

根據(jù)指數(shù)型函數(shù)所過的定點(diǎn),確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點(diǎn)為,,當(dāng)且僅當(dāng)時(shí)等號成立,即時(shí)取得最小值.故選:A【點(diǎn)睛】本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計(jì)算能力,屬于基礎(chǔ)題型.10.B【解析】

根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點(diǎn)睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.11.B【解析】

利用基本不等式得,可判斷②;和聯(lián)立解得可判斷①③;由圖可判斷④.【詳解】,解得(當(dāng)且僅當(dāng)時(shí)取等號),則②正確;將和聯(lián)立,解得,即圓與曲線C相切于點(diǎn),,,,則①和③都錯(cuò)誤;由,得④正確.故選:B.【點(diǎn)睛】本題考查曲線與方程的應(yīng)用,根據(jù)方程,判斷曲線的性質(zhì)及結(jié)論,考查學(xué)生邏輯推理能力,是一道有一定難度的題.12.D【解析】

根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個(gè)選項(xiàng)的正誤.【詳解】對于,,,錯(cuò)誤;對于,在上單調(diào)遞減,,錯(cuò)誤;對于,,,,錯(cuò)誤;對于,在上單調(diào)遞增,,正確.故選:.【點(diǎn)睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)的單調(diào)性.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意可得三棱錐的三條側(cè)棱兩兩垂直,則它的外接球就是棱長為的正方體的外接球,求出正方體的對角線的長,就是球的直徑,然后求出球的體積.【詳解】解:因?yàn)椋瑸檎切?,所以,因?yàn)?,所以三棱錐的三條側(cè)棱兩兩垂直,所以它的外接球就是棱長為的正方體的外接球,因?yàn)檎襟w的對角線長為,所以其外接球的半徑為,所以球的體積為故答案為:【點(diǎn)睛】此題考查球的體積,幾何體的外接球,考查空間想象能力,計(jì)算能力,屬于中檔題.14.【解析】

易得,所以是等差數(shù)列,再利用等差數(shù)列的通項(xiàng)公式計(jì)算即可.【詳解】由已知,,因,所以,所以數(shù)列是以為首項(xiàng),3為公差的等差數(shù)列,故,所以.故答案為:【點(diǎn)睛】本題考查由遞推數(shù)列求數(shù)列中的某項(xiàng),考查學(xué)生等價(jià)轉(zhuǎn)化的能力,是一道容易題.15.0.380.9【解析】

考慮恰有一件的三種情況直接計(jì)算得到概率,隨機(jī)變量的可能取值為,計(jì)算得到概率,再計(jì)算數(shù)學(xué)期望得到答案.【詳解】第一次燒制后恰有一件產(chǎn)品合格的概率為:.甲、乙、丙三件產(chǎn)品合格的概率分別為:,,.故隨機(jī)變量的可能取值為,故;;;.故.故答案為:0.38;0.9.【點(diǎn)睛】本題考查了概率的計(jì)算,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.16.【解析】

根據(jù)莖葉圖中的數(shù)據(jù),結(jié)合平均數(shù)與中位數(shù)的概念,求出x、y的值.【詳解】根據(jù)莖葉圖中的數(shù)據(jù),得:甲班5名同學(xué)成績的平均數(shù)為,解得;又乙班5名同學(xué)的中位數(shù)為73,則;.故答案為:.【點(diǎn)睛】本題考查莖葉圖及根據(jù)莖葉圖計(jì)算中位數(shù)、平均數(shù),考查數(shù)據(jù)分析能力,屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

若補(bǔ)充②③根據(jù)已知可得平面,從而有,結(jié)合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補(bǔ)充兩個(gè)條件,結(jié)果都一樣,以①②作為條件分析;(1)設(shè),可得,進(jìn)而求出梯形的面積,可求出,即可求出結(jié)論;(2),以為坐標(biāo)原點(diǎn),建立空間坐標(biāo)系,求出坐標(biāo),由(1)得為平面的法向量,根據(jù)空間向量的線面角公式即可求解.【詳解】第一種情況:若將①,②作為已知條件,解答如下:(1)設(shè)平面為平面.∵,∴平面,而平面平面,∴,又為中點(diǎn).設(shè),則.在三角形中,,由知平面,∴,∴梯形的面積,,,平面,,,∴,故,.(2)如圖,分別以所在直線為軸建立空間直角坐標(biāo)系,設(shè),則,由(1)得為平面的一個(gè)法向量,因?yàn)椋灾本€與平面所成角的正弦值為.第二種情況:若將①,③作為已知條件,則由知平面,,又,所以平面,,又,故為中點(diǎn),即,解答如上不變.第三種情況:若將②,③作為已知條件,由及第二種情況知,又,易知,解答仍如上不變.【點(diǎn)睛】本題考查空間點(diǎn)、線、面位置關(guān)系,以及體積、直線與平面所成的角,考查計(jì)算求解能力,屬于中檔題.18.(1)(2)存在;詳見解析【解析】

(1)由橢圓的性質(zhì)得,解得后可得,從而得橢圓方程;(2)設(shè),當(dāng)直線斜率存在時(shí),設(shè)為,代入橢圓方程,整理后應(yīng)用韋達(dá)定理得,代入=0由恒成立問題可求得.驗(yàn)證斜率不存在時(shí)也適合即得.【詳解】解:(1)由題易知解得,所以橢圓方程為(2)設(shè)當(dāng)直線斜率存在時(shí),設(shè)為與橢圓方程聯(lián)立得,顯然所以因?yàn)榛喗獾眉此源藭r(shí)存在定點(diǎn)滿足題意當(dāng)直線斜率不存在時(shí),顯然也滿足綜上所述,存在定點(diǎn),使成立【點(diǎn)睛】本題考查求橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓相交問題中的定點(diǎn)問題,解題方法是設(shè)而不求的思想方法.設(shè)而不求思想方法是直線與圓錐曲線相交問題中常用方法,只要涉及交點(diǎn)坐標(biāo),一般就用此法.19.(1);(2)680元.【解析】

(1)根據(jù)題意,列方程,然后求解即可(2)根據(jù)題意,計(jì)算出10000元使用“余額寶”的利息為(元)和10000元使用“財(cái)富通”的利息為(元),得到所有可能的取值為560(元),700(元),840(元),然后根據(jù)所有可能的取值,計(jì)算出相應(yīng)的概率,并列出的分布列表,然后求解數(shù)學(xué)期望即可【詳解】(1)據(jù)題意,得,所以.(2)據(jù),得這被抽取的7人中使用“余額寶”的有4人,使用“財(cái)富通”的有3人.10000元使用“余額寶”的利息為(元).10000元使用“財(cái)富通”的利息為(元).所有可能的取值為560(元),700(元),840(元).,,.的分布列為560700840所以(元).【點(diǎn)睛】本題考查頻數(shù)分布表以及分布列和數(shù)學(xué)期望問題,屬于基礎(chǔ)題20.(Ⅰ);(Ⅱ),證明見解析.【解析】

(Ⅰ)根據(jù)題意列出關(guān)于,,的方程組,解出,,的值,即可得到橢圓的方程;(Ⅱ)設(shè)點(diǎn),,點(diǎn),,易求直線的方程為:,令得,,同理可得,所以,聯(lián)立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論