版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年湖北省襄樊市普通高校對(duì)口單招數(shù)學(xué)自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(22題)1.已知甲、乙、丙3類(lèi)產(chǎn)品共1200件,且甲、乙、丙3類(lèi)產(chǎn)品的數(shù)量之比為3:4:5,現(xiàn)采用分層抽樣的方法從中抽取60件,則乙類(lèi)產(chǎn)品抽取的件數(shù)是()A.20B.21C.25D.40
2.兩個(gè)三角形全等是兩個(gè)三角形面積相等的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件
3.一元二次不等式x2+x-6<0的解集為A.(-3,2)B.(2,3)C.(-∞,-3)∪(2,+∞)D.(-∞,2)∪(3,+∞)
4.A.1/4B.1/3C.1/2D.1
5.A.
B.
C.
D.
6.下列立體幾何中關(guān)于線面的四個(gè)命題正確的有()(1)垂直與同一平面的兩個(gè)平面平行(2)若異面直線a,b不垂直,則過(guò)a的任何一個(gè)平面與b都不垂直(3)垂直與同一平面的兩條直線一定平行(4)垂直于同一直線兩個(gè)平面一定平行A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
7.橢圓x2/2+y2=1的焦距為()A.1
B.2
C.3
D.
8.以坐標(biāo)軸為對(duì)稱(chēng)軸,離心率為,半長(zhǎng)軸為3的橢圓方程是()A.
B.或
C.
D.或
9.5人排成一排,甲必須在乙之后的排法是()A.120B.60C.24D.12
10.如圖,在長(zhǎng)方體ABCD—A1B1C1D1中,AB=AD=3cm,AA1=2cm,則四棱錐A—BB1D1D的體積為()cm3.A.5B.6C.7D.8
11.從1,2,3,4這4個(gè)數(shù)中任取兩個(gè)數(shù),則取出的兩數(shù)之和是奇數(shù)的概率是()A.1/5B.1/5C.2/5D.2/3
12.等比數(shù)列{an}中,若a2
=10,a3=20,則S5等于()A.165B.160C.155D.150
13.若實(shí)數(shù)a,b滿足a+b=2,則3a+3b的最小值是()A.18
B.6
C.
D.
14.A.
B.
C.
15.A.2B.3C.4
16.已知{<an}為等差數(shù)列,a3+a8=22,a6=7,則a5=()</aA.20B.25C.10D.15
17.已知a=(4,-4),點(diǎn)A(1,-1),B(2,-2),那么()A.a=ABB.a⊥ABC.|a|=|AB|D.a//AB
18.A.3B.8C.1/2D.4
19.函數(shù)的定義域是()A.(-1,1)B.[0,1]C.[-1,1)D.(-1,1]
20.設(shè)是l,m兩條不同直線,α,β是兩個(gè)不同平面,則下列命題中正確的是()A.若l//α,α∩β=m,則l//m
B.若l//α,m⊥l,則m⊥α
C.若l//α,m//α,則l//m
D.若l⊥α,l///β則a⊥β
21.正方體棱長(zhǎng)為3,面對(duì)角線長(zhǎng)為()A.
B.2
C.3
D.4
22.計(jì)算sin75°cos15°-cos75°sin15°的值等于()A.0
B.1/2
C.
D.
二、填空題(10題)23.直線經(jīng)過(guò)點(diǎn)(-1,3),其傾斜角為135°,則直線l的方程為_(kāi)____.
24.若向量a=(2,-3)與向量b=(-2,m)共線,則m=
。
25.cos45°cos15°+sin45°sin15°=
。
26.雙曲線x2/4-y2/3=1的離心率為_(kāi)__.
27.要使的定義域?yàn)橐磺袑?shí)數(shù),則k的取值范圍_____.
28.過(guò)點(diǎn)(1,-1),且與直線3x-2y+1=0垂直的直線方程為
。
29.
30.
31.
32.如圖所示,某人向圓內(nèi)投鏢,如果他每次都投入圓內(nèi),那么他投中正方形區(qū)域的概率為_(kāi)___。
三、計(jì)算題(10題)33.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒(méi)有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
34.近年來(lái),某市為了促進(jìn)生活垃圾的分類(lèi)處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類(lèi),并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類(lèi)投放情況,現(xiàn)隨機(jī)抽取了該市四類(lèi)垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。
35.在等差數(shù)列{an}中,前n項(xiàng)和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.
36.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
37.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.
38.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).
39.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡(jiǎn)單說(shuō)明理由.
40.己知直線l與直線y=2x+5平行,且直線l過(guò)點(diǎn)(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
41.解不等式4<|1-3x|<7
42.己知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3=6,S3=12,求公差d.
四、簡(jiǎn)答題(10題)43.已知等差數(shù)列的前n項(xiàng)和是求:(1)通項(xiàng)公式(2)a1+a3+a5+…+a25的值
44.設(shè)拋物線y2=4x與直線y=2x+b相交A,B于兩點(diǎn),弦AB長(zhǎng),求b的值
45.如圖,在直三棱柱中,已知(1)證明:AC丄BC;(2)求三棱錐的體積.
46.三個(gè)數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。
47.計(jì)算
48.證明:函數(shù)是奇函數(shù)
49.求過(guò)點(diǎn)P(2,3)且被兩條直線:3x+4y-7=0,:3x+4y+8=0所截得的線段長(zhǎng)為的直線方程。
50.某中學(xué)試驗(yàn)班有同學(xué)50名,其中女生30人,男生20人,現(xiàn)在從中選取2人取參加校際活動(dòng),求(1)選出的2人都是女生的概率。(2)選出的2人是1男1女的概率。
51.已知求tan(a-2b)的值
52.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求實(shí)數(shù)x。
五、解答題(10題)53.
54.
55.已知數(shù)列{an}是公差不為0的等差數(shù)列a1=2,且a2,a3,a4+1成等比數(shù)列.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=2/n(an+2),求數(shù)列{bn}的前n項(xiàng)和Sn.
56.已知等差數(shù)列{an}的公差為2,其前n項(xiàng)和Sn=pnn+2n,n∈N(1)求p的值及an;(2)在等比數(shù)列{bn}中,b3=a1,b4=a2+4,若{bn}的前n項(xiàng)和為T(mén)n,求證:數(shù)列{Tn+1/6}為等比數(shù)列.
57.
58.已知函數(shù)f(x)=log21+x/1-x.(1)求f(x)的定義域;(2)討論f(x)的奇偶性;(3)用定義討論f(x)的單調(diào)性.
59.
60.
61.如圖,在三棱錐A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直線AD與平面BCD所成的角為45°點(diǎn)E,F(xiàn)分別是AC,AD的中點(diǎn).(1)求證:EF//平面BCD;(2)求三棱錐A-BCD的體積.
62.李經(jīng)理按照市場(chǎng)價(jià)格10元/千克在本市收購(gòu)了2000千克香菇存放人冷庫(kù)中.據(jù)預(yù)測(cè),香菇的市場(chǎng)價(jià)格每天每千克將上漲0.5元,但冷庫(kù)存放這批香菇時(shí)每天需要支出費(fèi)用合計(jì)340元,而且香菇在冷庫(kù)中最多保存110天,同時(shí),平均每天有6千克的香菇損壞不能出售.(1)若存放x天后,將這批香菇一次性出售,設(shè)這批香菇的銷(xiāo)售總金額為y元,試寫(xiě)出y與x之間的函數(shù)關(guān)系式;(2)李經(jīng)理如果想獲得利潤(rùn)22500元,需將這批香菇存放多少天后出售?(提示:利潤(rùn)=銷(xiāo)售總金額一收購(gòu)成本一各種費(fèi)用)(3)李經(jīng)理將這批香菇存放多少天后出售可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
六、單選題(0題)63.A.B.C.D.
參考答案
1.A分層抽樣方法.采用分層抽樣的方法,乙類(lèi)產(chǎn)品抽取的件數(shù)是60×4/3+4+5=20.
2.A兩個(gè)三角形全等則面積相等,但是兩個(gè)三角形面積相等不能得到二者全等,所以是充分不必要條件。
3.A
4.C
5.A
6.B垂直于同一平面的兩個(gè)平面不一定平行;垂直于一平面的直線與該平面內(nèi)的所有直線垂直;垂直于同一平面的兩條直線不一定平行也可能共線;垂直于同一直線的兩個(gè)平面平行。
7.B橢圓的定義.a2=1,b2=1,
8.B由題意可知,焦點(diǎn)在x軸或y軸上,所以標(biāo)準(zhǔn)方程有兩個(gè),而a=3,c/a=1/3,所以c=1,b2=8,因此答案為B。
9.C
10.B四棱錐的體積公式∵長(zhǎng)方體底面ABCD是正方形,∴△ABD中BD=3cm,BD邊上的高是3/2cm,∴四棱錐A-BB1DD1的體積為去1/3×3×2×3/2=6
11.D古典概型的概率.任意取到兩個(gè)數(shù)的方法有6種:1,2;1,3;1,4;2,3;2,4;3,4;,滿足題意的有4種:1,2;1,4;2,3;3,4;,則所求的概率為4/6=2/3
12.C
13.B不等式求最值.3a+3b≥2
14.C
15.B
16.D由等差數(shù)列的性質(zhì)可得a3+a8=a5+a6,∴a5=22-7=15,
17.D由,則兩者平行。
18.A
19.C由題可知,x+1>=0,1-x>0,因此定義域?yàn)镃。
20.D空間中直線與平面的位置關(guān)系,平面與平面的位置關(guān)系.對(duì)于A:l與m可能異面,排除A;對(duì)于B;m與α可能平行或相交,排除B;對(duì)于C:l與m可能相交或異面,排除C
21.C面對(duì)角線的判斷.面對(duì)角線長(zhǎng)為
22.D三角函數(shù)的兩角和差公式sin75°cosl5°-cos75°sinl5°=sin(75°-15°)=sin60°=
23.x+y-2=0
24.3由于兩向量共線,所以2m-(-2)(-3)=0,得m=3.
25.
,
26.e=雙曲線的定義.因?yàn)?/p>
27.-1≤k<3
28.
29.1
30.x+y+2=0
31.π
32.2/π。
33.
34.
35.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
36.
37.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
38.
39.
40.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過(guò)點(diǎn)(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時(shí),y=-4∴直線l在y軸上的截距為-4
41.
42.
43.
44.由已知得整理得(2x+m)2=4x即∴再根據(jù)兩點(diǎn)間距離公式得
45.
46.由已知得:由上可解得
47.
48.證明:∵∴則,此函數(shù)為奇函數(shù)
49.x-7y+19=0或7x+y-17=0
50.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510
(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510
選出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897
51.
52.
∵μ//v∴(2x+1.4)=(2-x,3)得
53.
54.
55.(1)設(shè)數(shù)列{an}的公差為d,由a1=2和a2,a3,a4+1成等比數(shù)列,得(2+2d)2=(2+d).(3+3d),解得d=2,或d=-1,當(dāng)d=-1時(shí)a3=0與a2,a3,a4+1成等比數(shù)列矛盾,舍去.所以d=2,所以an=a1+(n-1)d=2+2(n-1)=2n即數(shù)列{an}的通項(xiàng)公式an=2n.
56.
57.
58.(1)要使函數(shù)f(x)=㏒21+x/1-x有意義,則須1+x/1-x>0解得-1<x<1,所以f(x)的定義域?yàn)閧x|-1<x<1}.(2)因?yàn)閒(x)的定義域?yàn)閧x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定義在(-1,1)上的奇函數(shù).(3)設(shè)-1<x1<x2<1,則f(x1)-f(x2)=log1+x1/1+x2=㏒(1+x1)(1-x2)f(1-x1)(1+x2)∵-1<x1<x2<1
59.
60.
61.
62.(1)由題意,y與x之間的函數(shù)關(guān)系式為y=(10+0.5x)(2000-6x)=-3x2+940x+200
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國(guó)肉桂香精數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2031年中國(guó)重型自卸汽車(chē)操縱箱總成行業(yè)投資前景及策略咨詢(xún)研究報(bào)告
- 分布式環(huán)境數(shù)據(jù)的安全匿名共享協(xié)議研究
- MXene基復(fù)合材料的制備及其電解水性能研究
- 2025年智慧城市建設(shè)水泥承包合同4篇
- 二零二五年度瓷磚行業(yè)綠色供應(yīng)鏈管理合同7篇
- 2025年度瓷磚鋪設(shè)與智能家居環(huán)境監(jiān)測(cè)與凈化合同4篇
- 2025年度錯(cuò)時(shí)停車(chē)位租賃與智能停車(chē)數(shù)據(jù)分析合同4篇
- 二零二五年度工傷賠償金代墊支付專(zhuān)項(xiàng)合同范本4篇
- 二零二五年度新能源汽車(chē)銷(xiāo)售代理協(xié)議書(shū)3篇
- 2025年春新人教版物理八年級(jí)下冊(cè)課件 第十章 浮力 第4節(jié) 跨學(xué)科實(shí)踐:制作微型密度計(jì)
- 2024年全國(guó)統(tǒng)一高考英語(yǔ)試卷(新課標(biāo)Ⅰ卷)含答案
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識(shí) CCAA年度確認(rèn) 試題與答案
- 皮膚儲(chǔ)存新技術(shù)及臨床應(yīng)用
- 外研版七年級(jí)英語(yǔ)上冊(cè)《閱讀理解》專(zhuān)項(xiàng)練習(xí)題(含答案)
- 2024年遼寧石化職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)必考題
- 上海市復(fù)旦大學(xué)附中2024屆高考沖刺模擬數(shù)學(xué)試題含解析
- 幼兒園公開(kāi)課:大班健康《國(guó)王生病了》課件
- 小學(xué)六年級(jí)說(shuō)明文閱讀題與答案大全
- 人教pep小學(xué)六年級(jí)上冊(cè)英語(yǔ)閱讀理解練習(xí)題大全含答案
- 同等學(xué)力申碩英語(yǔ)考試高頻詞匯速記匯總
評(píng)論
0/150
提交評(píng)論