版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年遼寧省鐵嶺市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
2.
3.
4.
5.
6.方程2x2-y2=1表示的二次曲面是().A.A.球面B.柱面C.旋轉(zhuǎn)拋物面D.圓錐面
7.A.
B.0
C.ln2
D.-ln2
8.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=A.-1/x
B.1/x
C.-1/x2
D.1/x2
9.
10.
11.下列命題不正確的是()。
A.兩個(gè)無(wú)窮大量之和仍為無(wú)窮大量
B.上萬(wàn)個(gè)無(wú)窮小量之和仍為無(wú)窮小量
C.兩個(gè)無(wú)窮大量之積仍為無(wú)窮大量
D.兩個(gè)有界變量之和仍為有界變量
12.下列關(guān)系正確的是()。A.
B.
C.
D.
13.
A.f(x)
B.f(x)+C
C.f/(x)
D.f/(x)+C
14.
15.
16.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x
17.
18.
19.微分方程y"-y'=0的通解為()。A.
B.
C.
D.
20.A.A.2B.-1/2C.1/2eD.(1/2)e1/2二、填空題(20題)21.將積分改變積分順序,則I=______.
22.
20.
23.
24.
25.
26.
27.冪級(jí)數(shù)的收斂半徑為______.28.=______.
29.
30.已知平面π:2x+y-3z+2=0,則過(guò)點(diǎn)(0,0,0)且與π垂直的直線方程為______.
31.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。
32.設(shè)函數(shù)z=x2ey,則全微分dz=______.
33.
34.
35.
36.
37.
38.若=-2,則a=________。
39.
40.
三、計(jì)算題(20題)41.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
42.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.43.
44.45.
46.
47.
48.求微分方程y"-4y'+4y=e-2x的通解.
49.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則50.51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).52.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
53.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.54.求曲線在點(diǎn)(1,3)處的切線方程.55.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.56.證明:
57.
58.將f(x)=e-2X展開為x的冪級(jí)數(shù).59.求微分方程的通解.60.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)61.
62.
63.(本題滿分8分)64.65.
66.
67.設(shè)y=x2+2x,求y'。
68.
69.
70.五、高等數(shù)學(xué)(0題)71.用拉格朗日乘數(shù)法計(jì)算z=x2+y2+1在條件x+y=3下的極值。
六、解答題(0題)72.
參考答案
1.D考查了函數(shù)的單調(diào)區(qū)間的知識(shí)點(diǎn).
y=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增。
2.D解析:
3.C
4.D
5.C
6.B本題考查的知識(shí)點(diǎn)為識(shí)別二次曲面方程.
由于二次曲面的方程中缺少一個(gè)變量,因此它為柱面方程,應(yīng)選B.
7.A為初等函數(shù),定義區(qū)間為,點(diǎn)x=1在該定義區(qū)間內(nèi),因此
故選A.
8.C
9.B
10.A解析:
11.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無(wú)窮大。
12.B由不定積分的性質(zhì)可知,故選B.
13.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.
14.A
15.A
16.D
17.B
18.C
19.B本題考查的知識(shí)點(diǎn)為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。
20.B
21.
22.
23.
24.(03)(0,3)解析:
25.1本題考查了無(wú)窮積分的知識(shí)點(diǎn)。
26.227.0本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
所給冪級(jí)數(shù)為不缺項(xiàng)情形
因此收斂半徑為0.28.本題考查的知識(shí)點(diǎn)為定積分的換元積分法。設(shè)t=x/2,則x=2t,dx=2dt.當(dāng)x=0時(shí),t=0;當(dāng)x=π時(shí),t=π/2。因此
29.
30.本題考查的知識(shí)點(diǎn)為直線的方程和平面與直線的關(guān)系.
由于直線與已知平面垂直,可知直線的方向向量s與平面的法向量n平行.可以取s=n=(2,1,-3),又已知直線過(guò)點(diǎn)(0,0,0),由直線的標(biāo)準(zhǔn)式方程可知
為所求.
31.0因?yàn)閟inx為f(x)的一個(gè)原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。
32.dz=2xeydx+x2eydy33.0.
本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
所給冪級(jí)數(shù)為不缺項(xiàng)情形
因此收斂半徑為0.
34.7/5
35.5/436.0
37.ee解析:38.因?yàn)?a,所以a=-2。
39.
解析:
40.y=f(0)
41.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%42.由二重積分物理意義知
43.
則
44.
45.
46.
47.由一階線性微分方程通解公式有
48.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
49.由等價(jià)無(wú)窮小量的定義可知
50.
51.
列表:
說(shuō)明
52.
53.函數(shù)的定義域?yàn)?/p>
注意
54.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
55.
56.
57.
58.
59.
60.
61.
62.63.本題考查的知識(shí)點(diǎn)為定積分的換元積分法.
比較典型的錯(cuò)誤是利用換元計(jì)算時(shí),一些考生忘記將積分限也隨之變化.
64.
65.
66.
67.y=x2+2xy'=(x2)'+(2x)=2x+2xIn2。y=x2+2x,y'=(x2)'+(2x)=2x+2xIn2。
68.
69.
70.
71.z=x2+y2+1在條件x+y=3下的極值設(shè)F=x2+y2+1+λ(x+y一3);Fx"=2x+λ=0;Fy"=2y+λ=0;Fλ"=x+y
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024有債務(wù)離婚協(xié)議書
- 2024攝影工作室影視制作項(xiàng)目拍攝執(zhí)行合同范本3篇
- 中國(guó)地質(zhì)大學(xué)(武漢)《管理型財(cái)會(huì)仿真實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江萬(wàn)里學(xué)院《金屬塑性成形工藝與模具設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 長(zhǎng)江師范學(xué)院《定量分析化學(xué)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度新材料研發(fā)及產(chǎn)業(yè)化合作協(xié)議3篇
- 銀行工作總結(jié)人才培養(yǎng)鑄就輝煌
- 2025年度精密儀器設(shè)備安裝與承包裝卸協(xié)議3篇
- 教育培訓(xùn)行業(yè)話務(wù)員工作內(nèi)容
- 互聯(lián)網(wǎng)行業(yè)前臺(tái)工作總結(jié)
- 防止騷擾聲明
- 2024年蘇州市職業(yè)大學(xué)單招職業(yè)適應(yīng)性測(cè)試題庫(kù)附答案
- 2023年人教版七年級(jí)上冊(cè)《生物》期末考試卷(完整版)
- 《火力發(fā)電廠貯灰場(chǎng)防滲技術(shù)導(dǎo)則》
- DB32 4418-2022《 居住建筑標(biāo)準(zhǔn)化外窗系統(tǒng)應(yīng)用技術(shù)規(guī)程》
- (正式版)SHT 3075-2024 石油化工鋼制壓力容器材料選用規(guī)范
- 企業(yè)年度招聘計(jì)劃實(shí)施方案及費(fèi)用預(yù)算表Word
- 【真題】2023年徐州市中考道德與法治試卷(含答案解析)
- 三年級(jí)上冊(cè)數(shù)學(xué)脫式計(jì)算練習(xí)300題附答案
- 2024年公務(wù)員考試新疆維吾爾新疆生產(chǎn)建設(shè)兵團(tuán)圖木舒克市《行政職業(yè)能力測(cè)驗(yàn)》全真模擬試卷含解析
- 死因監(jiān)測(cè)工作總結(jié)
評(píng)論
0/150
提交評(píng)論