2023年廣東省汕尾市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)_第1頁(yè)
2023年廣東省汕尾市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)_第2頁(yè)
2023年廣東省汕尾市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)_第3頁(yè)
2023年廣東省汕尾市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)_第4頁(yè)
2023年廣東省汕尾市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年廣東省汕尾市普通高校對(duì)口單招數(shù)學(xué)自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.若不等式|ax+2|<6的解集是{x|-1<x<2},則實(shí)數(shù)a等于()A.8B.2C.-4D.-8

2.已知互相垂直的平面α,β交于直線l若直線m,n滿足m⊥a,n⊥β則()A.m//LB.m//nC.n⊥LD.m⊥n

3.在等差數(shù)列中,若a3+a17=10,則S19等于()A.75B.85C.95D.65

4.若一個(gè)幾何體的正視圖和側(cè)視圖是兩個(gè)全等的正方形,則這個(gè)幾何體的俯視圖不可能是()A.

B.

C.

D.

5.點(diǎn)A(a,5)到直線如4x-3y=3的距離不小于6時(shí),則a的取值為()A.(-3,2)B.(-3,12)C.(-,-3][12,+)D.(-,-3)(12,+)

6.設(shè)集合,則A與B的關(guān)系是()A.

B.

C.

D.

7.已知向量a(3,-1),b(1,-2),則他們的夾角是()A.

B.

C.

D.

8.sin750°=()A.-1/2

B.1/2

C.

D.

9.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,S8=4a3,a7=-2,則a9等于()A.-6B.-4C.-2D.2

10.A.B.C.D.

11.A.6B.7C.8D.9

12.隨著互聯(lián)網(wǎng)的普及,網(wǎng)上購(gòu)物已經(jīng)逐漸成為消費(fèi)時(shí)尚,為了解消費(fèi)者對(duì)網(wǎng)上購(gòu)物的滿意情況,某公司隨機(jī)對(duì)4500名網(wǎng)上購(gòu)物消費(fèi)者進(jìn)行了調(diào)查(每名消費(fèi)者限選一種情況回答),統(tǒng)計(jì)結(jié)果如表:根據(jù)表中數(shù)據(jù),估計(jì)在網(wǎng)上購(gòu)物的消費(fèi)者群體中對(duì)網(wǎng)上購(gòu)物“比較滿意”或“滿意”的概率是()A.7/15B.2/5C.11/15D.13/15

13.下列函數(shù)中,在其定義域內(nèi)既是偶函數(shù),又在(-∞,0)上單調(diào)遞增的函數(shù)是()A.f(x)=x2

B.f(x)=2|x|

C.f(x)=log21/|x|

D.f(x)=sin2x

14.若函數(shù)y=√1-X,則其定義域?yàn)锳.(-1,+∞)B.[1,+∞]C.(-∞,1]D.(-∞,+∞)

15.將三名教師排列到兩個(gè)班任教的安排方案數(shù)為()A.5B.6C.8D.9

16.

17.已知橢圓x2/25+y2/m2=1(m<0)的右焦點(diǎn)為F1(4,0),則m=()A.-4B.-9C.-3D.-5

18.已知a是函數(shù)f(x)=x3-12x的極小值點(diǎn),則a=()A.-4B.-2C.4D.2

19.已知函數(shù)f(x)=㏒2x,在區(qū)間[1,4]上隨機(jī)取一個(gè)數(shù)x,使得f(x)的值介于-1到1之間的概率為A.1/3B.3/4C.1/2D.2/3

20.已知向量a=(1,1),b=(2,x),若a+b與4b-2a平行,則實(shí)數(shù)x的值是()A.-2B.0C.2D.1

二、填空題(10題)21.若△ABC中,∠C=90°,,則=

。

22.函數(shù)f(x)=sin(x+φ)-2sinφcosx的最大值為_____.

23.lg5/2+2lg2-(1/2)-1=______.

24.cos45°cos15°+sin45°sin15°=

。

25.已知拋物線的頂點(diǎn)為原點(diǎn),焦點(diǎn)在y軸上,拋物線上的點(diǎn)M(m,-2)到焦點(diǎn)的距離為4,則m的值為_____.

26.不等式(x-4)(x+5)>0的解集是

。

27.已知數(shù)列{an}是各項(xiàng)都是正數(shù)的等比數(shù)列,其中a2=2,a4=8,則數(shù)列{an}的前n項(xiàng)和Sn=______.

28.以點(diǎn)(1,0)為圓心,4為半徑的圓的方程為_____.

29.過點(diǎn)(1,-1),且與直線3x-2y+1=0垂直的直線方程為

30.在ABC中,A=45°,b=4,c=,那么a=_____.

三、計(jì)算題(5題)31.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.

32.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡(jiǎn)單說明理由.

33.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.

34.解不等式4<|1-3x|<7

35.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。

四、簡(jiǎn)答題(10題)36.若α,β是二次方程的兩個(gè)實(shí)根,求當(dāng)m取什么值時(shí),取最小值,并求出此最小值

37.已知求tan(a-2b)的值

38.在等差數(shù)列中,已知a1,a4是方程x2-10x+16=0的兩個(gè)根,且a4>a1,求S8的值

39.已知函數(shù):,求x的取值范圍。

40.解關(guān)于x的不等式

41.點(diǎn)A是BCD所在平面外的一點(diǎn),且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

42.拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)為橢圓的左焦點(diǎn),過點(diǎn)M(-1,-1)引拋物線的弦使M為弦的中點(diǎn),求弦長(zhǎng)

43.某籃球運(yùn)動(dòng)員進(jìn)行投籃測(cè)驗(yàn),每次投中的概率是0.9,假設(shè)每次投籃之間沒有影響(1)求該運(yùn)動(dòng)員投籃三次都投中的概率(2)求該運(yùn)動(dòng)員投籃三次至少一次投中的概率

44.已知拋物線的焦點(diǎn)到準(zhǔn)線L的距離為2。(1)求拋物線的方程及焦點(diǎn)下的坐標(biāo)。(2)過點(diǎn)P(4,0)的直線交拋物線AB兩點(diǎn),求的值。

45.在ABC中,AC丄BC,ABC=45°,D是BC上的點(diǎn)且ADC=60°,BD=20,求AC的長(zhǎng)

五、證明題(10題)46.若x∈(0,1),求證:log3X3<log3X<X3.

47.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點(diǎn)E為PB的中點(diǎn).求證:PD//平面ACE.

48.

49.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.

50.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.

51.長(zhǎng)、寬、高分別為3,4,5的長(zhǎng)方體,沿相鄰面對(duì)角線截取一個(gè)三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.

52.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標(biāo)準(zhǔn)方程為(x-1)2

+(y+1)2

=8.

53.己知sin(θ+α)=sin(θ+β),求證:

54.△ABC的三邊分別為a,b,c,為且,求證∠C=

55.己知

a

=(-1,2),b

=(-2,1),證明:cos〈a,b〉=4/5.

六、綜合題(2題)56.己知橢圓與拋物線y2=4x有共同的焦點(diǎn)F2,過橢圓的左焦點(diǎn)F1作傾斜角為的直線,與橢圓相交于M、N兩點(diǎn).求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.

57.

(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標(biāo)軸相切的圓的標(biāo)準(zhǔn)方程.

參考答案

1.C

2.C直線與平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因?yàn)閚⊥β,所以n⊥L.

3.C

4.C幾何體的三視圖.由題意知,俯視圖的長(zhǎng)度和寬度相等,故C不可能.

5.C

6.A

7.B因?yàn)椋?,,因此,由于兩向量夾角范圍為[0,π],所以?shī)A角為π/4。

8.B利用誘導(dǎo)公式化簡(jiǎn)求值∵sinθ=sin(k×360°+θ)(k∈Z)∴sin750°=sin(2×360°+30°)=sin30°=1/2.

9.A等差數(shù)列的性質(zhì).由S8=4a3知:S8=a1+a2+a3+...+a8=4(a1+a8)=4(a3+a6)=4a3.a6=0,所以a7-a6=d=-2.所以a9=a7+2d=-2-4=-6.

10.B

11.D

12.C古典概型的概率公式.由題意,n=4500-200-2100-1000=1200.所以對(duì)網(wǎng)上購(gòu)物“比較滿意”或“滿意”的人數(shù)為1200+2100=3300,由古典概型概率公式可得對(duì)網(wǎng)上購(gòu)物“比較滿意”或“滿意”的概率為3300/4500=11/15.

13.C函數(shù)的奇偶性,單調(diào)性.函數(shù)f(x)=x2是偶函數(shù),但在區(qū)間(-∞,0)上單調(diào)遞減,不合題意;函數(shù)f(x)=2|x|是偶函數(shù),但在區(qū)間(-∞,0)上單調(diào)遞減,不合題意;函數(shù)f(x)=㏒21/|x|是偶函數(shù),且在區(qū)間(-∞,0)上單調(diào)遞增,符合題意;函數(shù)f(x)=sin2x是奇函數(shù),不合題意.

14.C

15.B

16.D

17.C橢圓的定義.由題意知25-m2=16,解得m2=9,又m<0,所以m=-3.

18.D導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用∵f(x)=x3-12x,f’(x)=3x2-12,令f(x)=0,則x1=-2,x2=2.當(dāng)x∈(-∞,-2),(2,+∞)時(shí),f(x)>0,則f(x)單調(diào)遞增;當(dāng)x∈(―2,2)時(shí),f(x)<0,則f(x)單調(diào)遞減,∴f(x)的極小值點(diǎn)為a=2.

19.A幾何概型的概率.由-1<㏒2x≤1,得1<x<2;而[1,4]∩[1/2,2]=[1,2]區(qū)間長(zhǎng)度為1,區(qū)間[1,4]長(zhǎng)度為3,所求概率為1/3

20.C

21.0-16

22.1.三角函數(shù)最值.因f(x)=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,故函數(shù)f(x)==sin(x+φ)-2sinφcosx的最大值為1.

23.-1.對(duì)數(shù)的四則運(yùn)算.lg5/2+21g2-〔1/2)-1=lg5/2+lg22-2=lg(5/2×4)-2=1-2=-1.

24.

,

25.±4,

26.{x|x>4或x<-5}方程的根為x=4或x=-5,所以不等式的解集為{x|x>4或x<-5}。

27.2n-1

28.(x-1)2+y2=16圓的方程.當(dāng)圓心坐標(biāo)為(x0,y0)時(shí),圓的-般方程為(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16

29.

30.

31.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2

32.

33.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

34.

35.

36.

37.

38.方程的兩個(gè)根為2和8,又∴又∵a4=a1+3d,∴d=2∵。

39.

X>4

40.

41.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。

(2)取BC中點(diǎn)O,以O(shè)為原點(diǎn),過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點(diǎn)O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O(shè)為原點(diǎn),過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,

42.

43.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999

44.(1)拋物線焦點(diǎn)F(,0),準(zhǔn)線L:x=-,∴焦點(diǎn)到準(zhǔn)線的距離p=2∴拋物線的方程為y2=4x,焦點(diǎn)為F(1,0)(2)直線AB與x軸不平行,故可設(shè)它的方程為x=my+4,得y2-4m-16=0由設(shè)A(x1,x2),B(y1,y2),則y1y2=-16∴

45.在指數(shù)△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20則,則

46.

47.

∴PD//平面ACE.

48.

49.

50.證明:考慮對(duì)數(shù)函數(shù)y=lgx的限制知

:當(dāng)x∈(1,10)時(shí),y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B

51.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長(zhǎng)方體的體積減去所

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論